
Signed Distance-based Deep Memory Recommender
Thanh Tran, Xinyue Liu, Kyumin Lee, Xiangnan Kong

Department of Computer Science
Worcester Polytechnic Institute

Massachusetts, USA
{tdtran,xliu4,kmlee,xkong}@wpi.edu

ABSTRACT
Personalized recommendation algorithms learn a user’s preference
for an item by measuring a distance/similarity between them. How-
ever, some of the existing recommendation models (e.g., matrix
factorization) assume a linear relationship between the user and item.
This approach limits the capacity of recommender systems, since
the interactions between users and items in real-world applications
are much more complex than the linear relationship. To overcome
this limitation, in this paper, we design and propose a deep learning
framework called Signed Distance-based Deep Memory Recom-
mender, which captures non-linear relationships between users and
items explicitly and implicitly, and work well in both general recom-
mendation task and shopping basket-based recommendation task.
Through an extensive empirical study on six real-world datasets in
the two recommendation tasks, our proposed approach achieved
significant improvement over ten state-of-the-art recommendation
models.

KEYWORDS
Memory recommender; signed distance; metric-based attention.

ACM Reference Format:
Thanh Tran, Xinyue Liu, Kyumin Lee, Xiangnan Kong. 2019. Signed Distance-
based Deep Memory Recommender. In Proceedings of the 2019 World Wide
Web Conference (WWW ’19), May 13–17, 2019, San Francisco, CA, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3308558.
3313460

1 INTRODUCTION
Recommender systems [1] have been deployed in many online appli-
cations such as e-commerce, music/video streaming services, social
media, etc. They have played a vital role for users to explore new
items and for companies to increase their revenues. Most of recom-
mendation algorithms model user preferences and item properties
based on observed interactions (e.g., clicks, reviews, ratings) be-
tween users and items [20, 21, 30]. In a perspective, we can view
most of the recommendation models as a measurement of similarity
or distance between a user and an item. For instance, the well known
latent factor (i.e., matrix factorization) models [19] usually employ
an inner product function to approximate the similarity between the
user and the item. Although the latent factor models achieved com-
petitive performance in some datasets, they did not correctly capture

This paper is published under the Creative Commons Attribution 4.0 International (CC-
BY 4.0) license. Authors reserve their rights to disseminate the work on their personal
and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313460

user-item latent space item-item latent space
Personalized
Metric-based

Attention

Target Pair

attention

embedding embedding

embedding

Euclidean
distance

+
learned by SDP

learned by SDM

Consumed

Figure 1: We consider a recommender as a signed distance ap-
proximator, and decompose the signed distance between a user
and an item into two parts: the left box learns an explicitly
signed distance between the user and item (i.e., the camera lens),
the right box learns an implicitly signed distance between the
user and the item via the user’s recently consumed items (i.e.,
the book, CD and camera). Our novel personalized metric-based
soft attention is applied to the consumed items to optimize their
contributions to the output signed distance score. Then the two
parts are combined to obtain a final score. Most of linear la-
tent factor models are equivalent to simply measuring the lin-
ear Euclidean distance in the user-item latent space (shown as
the green line).

complex (i.e., non-linear) relationships between users and items
because the inner product function follows limited linear nature.

Existing recommendation algorithms faced difficulties in find-
ing good kernels for different data patterns [30], only focused on
user-item latent space without considering the item-item latent
space together [12, 24, 25, 43, 57], or required additional auxil-
iary information (e.g., item description, music content, reviews)
[4, 17, 29, 31, 53]. To overcome the drawbacks, in this paper we aim
to propose and build a deep learning framework to learn a non-linear
relationship between a user and a target item by measuring a distance
from the observed data. In particular, we propose Signed Distance-
based Deep Memory Recommender (SDMR), which captures non-
linear relationship of the user and item explicitly and implicitly,
combines explicitly and implicitly measured relationship to produce
a final distance score for the recommendation, and performs well
in both general recommendation task and shopping basket-based
recommendation task.

SDMR internally combines two signed distances, each of which
is measured by our proposed Signed Distance-based Perceptron
(SDP) and Signed Distance-based Memory Network (SDM). On one
hand, SDP explicitly measures a non-linear signed distance between
the user and the item. Many existing models [13, 16] rely on a pre-
defined metric such as Euclidean distance (the green line in Figure 1)

https://doi.org/10.1145/3308558.3313460
https://doi.org/10.1145/3308558.3313460
https://doi.org/10.1145/3308558.3313460

which is much more limited than the customized non-linear signed
distance learned from the data (the red curves in Figure 1). On the
other hand, SDM implicitly measures a non-linear signed distance
between the user and the item via the user’s recently consumed
items. SDM is similar to the item neighborhood-based recommender
[36, 42] in nature. However, it is more advanced in several aspects, as
shown in the right side of Figure 1. First, SDM only focuses on a set
of recently consumed items of the target user (e.g., the book, CD and
camera in Figure 1) as context items. Second, it employs additional
memories to learn a novel personalized metric-based attention on the
consumed items. The goal of our proposed attention is to compute
weights of each consumed item w.r.t. the target item (i.e., the camera
lens). In the example, the attention module assigns higher weights
on the camera and lower weights on the book and CD. Unlike our
approach, most of the existing neighborhood-based models consider
contribution of consumed items to the target item equally, leading
to suboptimal results. Last but not the least, we update the attention
weights via a gated multi-hop to build a long-term memory within
SDM. This multi-hop design helps refine our attention module and
produces more accurate attentive scores.

The contributions of this work are summarized as follows:

• We design a deep learning framework which can tackle both
general recommendation task and shopping basket-based recom-
mendation task.

• We propose SDMR that combines two signed distance scores
internally measured by SDP and SDM, which capture non-linear
relationship between a user and an item explicitly and implicitly.

• To better balance the weights among consumed items of the
user, we propose a novel multi-hop memory network with a
personalized metric-based attention mechanism in SDM.

• Extensive experiments on six datasets in two different recom-
mendation tasks demonstrate the effectiveness of our proposed
methods against ten baselines.

2 RELATED WORK
Latent Factor Models (LFM) have been extensively studied in the
literature, which include Matrix Factorization [16], Bayesian Person-
alized Ranking [39], fast matrix factorization for implicit feedbacks
(eALS) [13], etc. Despite their success, LFM suffer from several
limitations. First, LFM overlook associations between the user’s pre-
viously consumed items and the target item (e.g. mobile phones and
phone cases). Second, LFM usually rely on inner product function,
whose linearity limits the capability of modeling complex user-item
interactions. To address the second issue, several non-linear latent
factor models have been proposed, with the help of Gaussian pro-
cess [23] or kernels [30, 62]. However, they either require expensive
hyper-parameter tuning or face difficulties in finding good kernels
for different data patterns.

Neighborhood-based models [36, 42] are usually based on the
principle that similar users prefer similar items. The problem turns
into finding the neighbors of a user or an item based on a pre-defined
distance/similarity metric, such as cosine vector similarity [3, 22],
Person Correlation similarity [6], etc. The recommendation quality
highly depends on a chosen metric, but finding a good pre-defined
metric is usually very challenging. Furthermore, these models are

also sensitive to the selection of neighbors. Our proposed SDM is
similar to neighborhood-based models in nature, but it exploits a
novel personalized metric-based attention for assigning attentive
weights to context items. Therefore, our approach is more robust
and less sensitive than conventional neighborhood-based models.

NeuMF [12] is a neural network that generalizes matrix factor-
ization via Multi Layer Perceptron (MLP) for learning non-linear
interaction functions. Similarly, some other works [24, 25, 43, 57]
substitute MLP with auto-encoder architecture. It is worth noting that
all these approaches are limited by only considering the user-item
latent space, and overlook the correlations in the item-item latent
space. Besides, some deep learning based works [32, 34, 45, 51]
employ auxiliary information such as item description [17], music
content [53], item visual features [4, 29], reviews [31] to address the
cold-start problem. However, this auxiliary information is not always
available, and it limits their applicability in many real-world systems.
Another line of works use deep neural networks to model temporal
effects of consumed items [14, 37, 49, 56]. Although our proposed
methods do not explicitly consider the temporal effects, SDM uti-
lizes the time information to select a set of recently consumed items
as the context items of the target item.

The most closely related work to our work is recently proposed
(Collaborative Memory Network (CMN) [7]). In this work, Memory
Network [48] is adapted to measure similarities between users and
user neighbors. Key differences between our work and CMN are
as follows: (i) First, we follow an item neighborhood based design,
whereas CMN follows a user neighborhood based design. The prior
work showed that item neighborhood based models slightly out-
performed user neighbor based models [27, 42]; (ii) Second, our
proposed SDM model uses our proposed personalized metric-based
attention mechanism and produces signed distance scores as output,
whereas CMN exploited a traditional inner product based attention;
(iii) Third, we use a gated multi-hop architecture [28], which was
shown to perform better than the original multi-hop design [48].

3 PROBLEM STATEMENT
In this section, we describe two recommendation problems: (i) gen-
eral recommendation task; and (ii) shopping basket-based recom-
mendation task. In the following sections, we focus on solving them.
General recommendation task: Given a whole item setV = {v1,v2,
...,v |V | }, and a whole user set U = {u1,u2, ...,u |U | }. Each user
ui ∈ U may consume several items {vi1,vi2, ...,vik } in V , denoted
as a set of context items c. In this task, given a user’s previously
consumed items, a recommendation model predicts a next target
item vj that user ui may prefer, denoting this task as estimating
P (ui ,vj |c). Note that some existing works assume independent re-
lationships between vj and context items in the set c, leading to
P (ui ,vj |c) = P (ui ,vj) [12, 13]. In our work, we model the ui ’s
preference on vj in two steps: (i) an explicit preference of ui on vj
in a signed distance based perceptron, and (ii) an implicit preference
of ui on vj via summing attentive effects of context items toward
target item vj in a signed distance based memory network.
Shopping Basket-based recommendation task: This problem is
based on the fact that users go shopping offline/online and add some
items into a basket/cart together. Each shopping basket/cart is seen
as a transaction, and each user may shop once or multiple times,

leading to one or multiple transactions. Let T (u) = {t1, t2, ..., t |T (u) | }

as a set of the user u’s transactions, where |T (u) | denotes the number
of user u’s transactions. Each transaction ti = {v1,v2, ...,v |ti | } con-
sists of several items in the whole item set V . In this problem, it is
assumed that all the items in ti are inserted into the same basket at
the same time, ignoring the actual order of the items being inserted
and considering ti ’s transaction time as each item’s insertion time.
Given a target item vj ∈ ti , the rest of the items in ti will be seen as
the context items of vj , denoted as c (i.e. c = ti\{vj }). Then, given
the set of context items c, a recommendation model predicts a condi-
tional probability P (u,vj |c), which is interpreted as the conditional
probability that u will add the item vj into the same basket with the
other items c.

Both of the recommendation tasks above are popular in the litera-
ture [8, 12, 37, 40]. The general recommendation task differs from
the shopping basket-based recommendation task because there is no
specific context items of the target item in the general recommenda-
tion task. Note that the two tasks are personalized recommendation
problems. In fact, there are non-personalized recommendation prob-
lems such as session-based recommendation [14], where users (i.e.
user IDs) are not available in transactions. However, in this paper,
we focus on personalized recommendation tasks because they are
more preferred in the literature [8, 37, 40].

4 PROPOSED METHODS
Our proposed Signed Distance-based Deep Memory Recommender
(SDMR) consists of two major components: Signed Distance-based
Perceptron (SDP) and Signed Distance-based Memory network
(SDM). We first describe an overview of our models as follows:

• Given a target user i and a target item j as two one-hot vectors,
we pass the two vectors through the user and item embedding
spaces to get user embedding ui and item embedding vj .

• On one hand, our proposed Signed Distance-based Perceptron
(SDP) will measure a signed distance score between ui and vj
by a multi-layer perceptron network.

• On the other hand, given target user i, target item j, and the user
i’s recently consumed context items s as the input, our Signed
Distance-based Memory network (SDM) will measure a signed
distance score between user i and item j via attentive distances
between context items s and target item j.

• Then, the Signed Distance-based Deep Memory Recommender
(SDMR) model will measure a total distance between user i and
item j by learning a combination of SDP and SDM. The smaller
the total distance is, the more likely user i will consume item j.

Next, we describe SDP, SDM, and SDMR in detail.

4.1 Signed Distance-based Perceptron (SDP)
We first propose Signed Distance-based Perceptron (SDP) that ex-
plicitly learns a signed distance between a target user i and a target
item j. An illustration of SDP is shown in Figure 2. Let the embed-
ding of a target user i be ui ∈ Rd , and the embedding of a target
item j bevj ∈ Rd , where d is the number of dimensions in each em-
bedding. First, SDP takes a concatenation of these two embeddings
as the input and proceeds as follows:

target user target item

concatenate
item

embedding

…

element-wise square

estimated signed
distance o(SDP)

user
embedding

BPR loss ground
truth

MLP
layers e(1)

e(l)

e(l+1)

Figure 2: The illustration of our SDP model.

e (1) = f1 (W(1)
[
ui
vj

]
+ b (1)) (1)

e (2) = f2 (W(2)e (1) + b (2)) (2)

· · · (3)

e (ℓ) = fℓ (W(ℓ)e (ℓ−1) + b (ℓ)) (4)

e (ℓ+1) = square (e (ℓ)) (5)

o(SDP) = w (o)⊤e (ℓ+1) + b (o) (6)

where fl (·) refers to a non-linear activation function at the layer lth

(e.g. sigmoid, ReLu or tanh), and square (·) denotes an element-
wise square function (e.g square ([2, 3]) = [6, 9]). Through experi-
mental results, we choose tanh as the activation function because
it yields slightly better results than ReLu. From now on, we will
use f (·) to denote the tanh function. It can be easily observed that
Eq. (1) – (4) form a trivial Multi-Layer Perceptron (MLP) network,
which is a popular design [12, 60] to learn a complex and non-linear
interaction between user embedding ui and item embedding vj .
Our new design starts at Eq. (5) – Eq. (6). In Eq. (5), we apply
the element-wise squared function square (·) to the output vector
e (l) of the MLP and obtain a new output vector e (l+1) . Next, in
Eq. (6), we use a fully connected layer w (o) to combine different
dimensions in e (l+1) and yields a final distance value o(SDP) . Our
idea of using w (o) in here is that after applying the element-wise
square function square (·) in Eq. (5), all the dimensions in e (l+1) will
be non-negative. Thus, we consider each dimension of e (l+1) as a
distance value. The edge weights w (o) will then be used to combine
those distant dimensions to provide a more fine-grained distance.

We note that SDP can be reduced to a squared Euclidean distance
with the following setting: at Eq. (1), W(1) = [1,−1] with 1 denotes

an identity matrix and so W(1)
[
ui
vj

]
= ui −vj ; the activation f (·)

is an identity function; the number of MLP layers ℓ = 1; the edge-
weights layer at Eq. (6): w (o) = 1 (e.g. the all-ones matrix), bias
b (o) = 0. Note that if w (o) in Eq. (6) is an all-negative layer, it
will yield a negative value, which we name as a signed distance1

score. If we see each user i as a point in multi dimensional space,
and the user’s preference space is defined by a boundary Ω, we
can interpret this signed distance score as follows: When the item

1https://en.wikipedia.org/wiki/Signed_distance_function

Input Memory

target
item

item
embedding

V(i)

Personalized Metric-based Attention Module
pairwise
concat

target
user

Wc

Wc

Wc

Wc

Wc

Output Memory

target
item

user
embedding

U(o)

item
embedding

V(o)

pairwise
concat target

user

 softmax

L2-norm

L2-norm

L2-norm

L2-norm

L2-norm

extract

extract

attention
weights

Output Module

Wd

Wd

Wd

Wd

Wd

qij

pij

zij

Input Module

Wa

Wb

square

weighted
summation

eij

estimated
signed

distance

ground truth

aij

oij

BPR
loss

we

square

square

square

square

user
embedding

U(i)

Figure 3: The illustration of single-hop SDM, which consists of
a memory module, an input module, an attention module, and
an output module.

j is out of the user i’s preference boundary Ω, the distance d (i, j)
between them is positive (i.e. d (i, j) > 0) and it reflects that user i
does not prefer item j. When the distance between user i and item j
is shortened and j is right on the boundary Ω, the distance between
them is zero and it indicates user i likes item j. As j is coming
inside Ω, the distance between them becomes negative and reflects
a higher preference of user i on item j. In short, we can see SDP
as a signed distance function, which could learn a complex signed
distance between a user and an item via a MLP architecture with non-
linear activations and an element-wise square function square (·). In
the recommendation domain, the signed distances will provide more
fine-grained distance values, thus, reflecting a user’ preferences on
items more accurately (i.e. accurately rank items for the user).

4.2 Signed Distance-based Memory Network
(SDM)

We propose a multi-hop memory network, Signed Distance-based
Memory network (SDM), to model implicit preference of a user
on the target item via the user’s previously consumed items (i.e.,
context items). The implicit preference is represented as a signed
distance. First, we describe a single-hop SDM, and then describe
how to extend it into a multi-hop design. Following the traditional
architecture of a memory network [28, 48, 58], our proposed single-
hop SDM has four main components: a memory module, an input
module, an attention module, and an output module. The overview of
SDM’s architecture is presented in Figure 3. We will go into details
of each SDM’s module as follows:

4.2.1 Memory Module: We maintain two memories called in-
put memory and output memory. The input memory contains two
embedding matrices U(i) ∈ RM×d and V(i) ∈ RN×d , where M and
N are the number of users and the number of items in the system,
respectively. d denotes the embedding size of each user and each
item. Similarly, the output memory also contains two embedding
matrices U(o) ∈ RM×d and V(o) ∈ RN×d . As shown in Figure 3, the
input memory will be used to calculate attention weights of a user’s
consumed items (i.e., context items), whereas the output memory
will be used to measure a final signed distance between the target
user and the target item via the user’s context items.

Given a target user i, a target item j and a set of user i’s con-
sumed items as context items T i

j , the output of this module is the
embeddings of user i, item j, and all context items k ∈ T i

j : (ui ,vj ,

<v1,v2, ...,vk>). Since this module has a separated input memory
and output memory, we obtain (u (i)

i ,v
(i)
j , <v

(i)
1 ,v

(i)
2 , ...,v

(i)
k >) as

the output of the input memory, and (u (o)
i ,v

(o)
j , <v

(o)
1 ,v

(o)
2 , ...,v

(o)
k >)

as the output of the output memory. It is obvious that u (i)
i is the i-th

row of U(i) ,v (i)
j andv (i)

k are the corresponding j-th and k-th row of

V(i) . A similar explanation is applied to u
(o)
i v

(o)
j , andv (o)

k .

4.2.2 Input Module: The goal of the input module is to form a
non-linear combination between the target user embedding and the
target item embedding. Given the target user embedding u (i)

i and the

target item embeddingv
(i)
j from the input memory in the memory

module, following the widely adopted design in multimodal deep
learning work [47, 61], the input module simply concatenates the
two embeddings, and then applies a fully connected layer with a
non-linear activation f (·) (i.e. tanh function) to obtain a coherent
hidden feature vector as follows:

qi j = f
(
Wa

u
(i)
i

v
(i)
j

+ ba

)
(7)

where Wa ∈ Rd×2d is the weights of input module. Note that qi j ∈
Rd can be seen as a query embedding in Memory Network [48].

Similarly, if the inputs of the input module are the target user
embeddings u

(o)
i and the target item embeddings v

(o)
j from the

output memory, we can form a non-linear combination between u (o)
i

andv (o)
j (i.e. an output query), denoted as pi j , as follows:

pi j = f
(
Wb

u
(o)
i

v
(o)
j

+ bb

)
(8)

4.2.3 Attention Module: The goal of the attention module is to
assign attentive scores to different context items (or candidates)
given the combined vector (or a query) qi j of the target user i and
target item j obtained in Eq. (7). First, we calculate the squared L2
distance between qi j and each candidate itemv

(i)
k as follows:

zi jk =
f

(
Wc

qi j

v
(i)
k

+ bc

)22 (9)

where | | · | |2 refers to the L2 distance (or Euclidean distance), which
is widely used in previous works to measure similarity among items
[8] or between users and items [15]. To better understand our intu-
ition in Eq. (9), we will break it into smaller parts and explain them.

First, similar to the intuition of Eq. (7), we have f
(
Wc

qi j

v
(i)
k

+ bc

)
component to define a non-linear combination between the input
query qi j and each context item embeddings v

(i)
k

. Then, | | · | |22
will measure the squared L2 distance of the combined vector. It
is worth to note that with a following setting: Wa = [0,1] where
1 refers to an identity matrix and 0 is an all-zeros matrix; f (·)
is an identity function; Wc = [1,−1]; bias terms ba = bc = 0.

Then, in Eq. (7), qi j = f
(
Wa

u
(i)
i

v
(i)
j

+ ba

)
= v

(i)
j ; in Eq. (9),

f
(
Wc

qi j

v
(i)
k

+ bc

)
= v

(i)
j − v

(i)
k , and zi jk = | |(v

(i)
j − v

(i)
k) | |22 ,

which simply generalizes a squared L2 distance between the tar-
get item j and the context item k. Additionally, with another set-
ting: Wa = [1,−1]; f (·) is an identity function; Wc = [1,1]; bias

terms ba = bc = 0. Then, in Eq. (7), qi j = f
(
Wa

u
(i)
i

v
(i)
j

+ ba

)
=

u
(i)
i −v

(i)
j , in Eq. (9), f

(
Wc

qi j

v
(i)
k

+ bc

)
= u

(i)
i −v

(i)
j +v

(i)
k , and

zi jk = | |(v
(i)
k +u

(i)
i −v

(i)
j) | |22 , which simply generalizes a squared

L2 distance between the target item j and the context item k where
the user i plays as a translator [9]. The two examples above show that
our proposed design can learn a more generalized distance between
target and context items.

The output squared L2 distance in Eq. (9) will show how similar
the target item j and the context item k are. The lower the distance
score is, the more similar two items j and k are. Next, we use the
Softmax function to normalize and obtain attentive score between j
and k as follows:

ai jk =
exp (−zi jk)∑

p∈T i
j
exp (−zi jp)

(10)

where T i
j is the set of user i’s neighborhood items. The minus sign

in Eq. (10) is used to assign a higher attention score for a lower
distance between two items (j, k).

We note that the L2 distance (or Euclidean distance) satisfies
four conditions of a metric 2. While the crucial triangle inequality
property of a metric was shown to provide a better performance
compared to the inner product [15, 38, 46] in recommendation do-
mains, to our best of knowledge, most of existing attention designs
[2, 5, 26, 33, 44, 54, 59] adopted the inner product for measuring
attentive scores. Hence, this proposed attention design is the first
attempt to bring metric properties into the attention mechanism.

Similar to [50], we limit the number of considering context items
by choosing the user i’s s most recently consumed items before
target item j as the context items of target item j. Here, s can be
selected via tuning with a development dataset. The soft attention
vector containing attentive contribution scores of s context items
toward the target item j of a user i is given as follows:

ai j =

ai j1
· · ·

ai js

(11)

4.2.4 Output Module: Given the attentive scores ai j in Eq.(11)

and the combined vector pi j ∈ Rd of the user embedding u
(o)
i and

item embedding v
(o)
j from the output memory U (o) and V (o) , the

goal of this output module is to measure a total output distance
o
(SDM)
i j between the output target item embeddings v (o)

j and all

the user i ’s output context item embeddings v (o)
k (k ∈ T ij) using

attention weights ai j and the output query pi j as follows:

o
(SDM)
i j = w⊤e ei j + be (12)

where ei j ∈ Rd is calculated as follows:

2https://en.wikipedia.org/wiki/Metric_(mathematics)

Input
Memory

Output
Memory

a(0)

q(0)
Input

Module

Attention
Module

Output
Module

e(0)p(0)

Wg(0)

g(0)

1-g(0)

q(0)

+

q(1)

Attention
Module

a(h)

e(h)

…

q(h)

…

Output
Module

p(h)

ground truth

BPR
loss

we

estimated
signed

distance

o(SDM)

Figure 4: The illustration of our multi-hop SDM.

ei j =
∑
k ∈T i

j

ai jk × square
(
f
(
Wd

pi j

v
(o)
k

+ bd

))
(13)

In here, let ri jk = f
(
Wd

pi j

v
(o)
k

+ bd

)
. Similar to the previously

discussed intuition in Eq (9), ri jk is a flexible combination between

pi j and each output context item embeddingsv (o)
k ; square (·) is an

element-wise squared function. Our idea in Eq. (12), (13) is similar
to the idea in Eq. (5), (6) of the SDP model. First, in Eq. (13), each
context item k will attentively contribute to the target item j via a
squared Euclidean measure. Second, in Eq. (12), each non-negative
dimension in ei j will be considered as a distance dimension and we
use an edge-weights layer we to combine them flexibly. When there
is only one context item in T i

j , then in Eq. (13), the attention score
ai jk=1.0, leading to ei j = square (ri jk), which is similar to Eq. (5).
In this case, SDM will measure the distance between target item j
and context item k in the same way as SDP model does. Note that
Eq. (13) is similar to Eq. (6) so SDM can also learn a signed distance
value, which also provides a more fine-grained distance compared
to a general distance value.

4.2.5 Multi-hop SDM:. Inspired by previous work [48] where the
multi-hop design helped to refine the attention module in Memory
Network, we also integrate multiple hops to further extend our SDM
model to build a deeper network (Figure 4). As the gated multi-hop
design [28] was shown to perform better than the original multi-hop
design with a simple residual connection in [48], we employ this
gated memory update from hop to hop as follows:

д(h−1) = σ (W(h−1)
д q (h−1) + b (h−1)д) (14)

q (h) = (1 − д(h−1)) ⊙ e (h−1) + д(h−1) ⊙ q (h−1) (15)

where q (h−1) is the input query embedding as shown in Eq. (7) at
hop h − 1, W(h−1)

д and bias b (h−1)д are hop-specific parameters, σ is
the sigmoid function, e (h−1) is the output of Eq. (13) at hop h − 1,
q (h) is the input query embedding at the next hop h. So the attention
could be updated at hop h accordingly using q (t) as follows:

α
(h)
i jk =

exp (−z
(h)
i jk)∑

p∈T i
j
exp (−z

(h)
i jp)

(16)

where z (h)i jk is measured by:

z
(h)
i jk =

f
(
W(h)

c

q
(h)
i j

v
(i)
k

+ bc

)22 (17)

The multi-hop architecture with gated design further refines the
attention for different users based on the previous output from hop
to hop. Hence, if the final hop is h then the SDM model with h hops,
denoted as SDM-h, will use a

(h)
i j to yield a final signed distance

score as follows:

o
(SDM−h)
i j = w⊤e e

(h)
i j + b

(h)
e (18)

where ei j is calculated as:

e
(h)
i j =

∑
k ∈T i

j

a
(h)
i jk × square

(
f
(
W(h)

d

p
(h)
i j

v
(o)
k

+ b

(h)
d

))
(19)

Weight constraints in multi-hop SDM model: To save memory,
we use the global weight constraint in multi-hop SDM. Particularly,
input memory U (i) ,V (i) and output memory U (o) ,V (o) are shared
among different hops. All the weights are shared from hop to hop
W

(1)
a =W

(2)
a = ... =W

(h)
a ;W (1)

b =W
(2)
b = ... =W

(h)
b ;W (1)

c =W
(2)
c

= ... = W
(h)
c ; W (1)

d = W
(2)
d = ... = W

(h)
d ; and so do all bias terms.

The gate weights are also global weights:W (1)
д =W

(2)
д = ... =W

(h)
д .

4.3 Signed Distance-based Deep Memory
Recommender (SDMR)

Now we propose Signed Distance-based Deep Memory Recom-
mender (SDMR), a hybrid network that combines SDP and SDM.
The first approach to combine them is to employ a weighted summa-
tion of the output scores from SDP and SDM as follows:

o = βo(SDP) + (1 − β)o(SDM) (20)

where o(SDP) is the signed distance score obtained at Eq. (6), o(SDM)

is the signed distance score obtained at Eq. (18), and β ∈ [0, 1] is a
hyper-parameter to control the contribution of SDP and SDM. When
β=0, SDMR becomes SDM. When β=1, SDMR becomes SDP.

However, to avoid tuning an additional hyper-parameter β , we do
not use Eq. (20) for SDMR. Instead, we let SDMR self-learns the
combination of SDM and SDM as follows:

o = ReLU

(
w⊤u

[
e (ℓ+1)

e (h)

]
+ bu

)
(21)

where e (ℓ+1) is the final layer embedding from SDP and is obtained
at Eq. (5), e (h) is the final hop output from the multi-hop SDM
obtained at Eq. (19). We note that SDP and SDM are first pre-trained
separately using the BPR loss function (see the next section). Then,
we obtain e (ℓ+1) from SDP, and e (h) from SDM, and keep them fixed
in Eq. (21) to learn wu and bu . We use ReLU in Eq. (21) because
ReLU encourages sparse activations and helps to reduce over-fitting
when combining the two components SDP and SDM.

4.4 Loss Functions
We adopt the Bayesian Personalized Ranking (BPR) as our loss
function, which is similar to the idea of AUC (area under the curve):

L = argmin
θ

(
−

∑
(u,i+,i−)

log σ (oui− − oui+) + λ∥θ ∥
2
)

(22)

where we uniformly sample tuples in a form of (u, i+, i−) for user u
with positive item (consumed) i+ and negative item (unconsumed)
i−. λ is a hyper-parameter to control the regularization term, and

σ (·) is the sigmoid function. Note that other pairwise probability
functions could be plugged in Eq. (22) to replace σ (·). Both SDP
and SDM are end-to-end differentiable since we uses soft attention
over the output memory. Hence, we can utilize back-propagation to
learn our models with stochastic gradient descent or Adam [18].

5 EMPIRICAL STUDY
We evaluate our SDP, SDM, SDMR models against ten state-of-the-
art baselines in two recommendation tasks: (i) general recommenda-
tion task, and (ii) shopping basket-based recommendation task. We
mainly aim to answer the following research questions (RQs):

• RQ1: How do SDP, SDM, and SDMR perform compared to
other state-of-the-art models in both general recommendation
task and shopping basket-based recommendation task?

• RQ2: Why/How does the multi-hop design help to improve the
proposed models’ performance?

5.1 Datasets
General recommendation task: In this task, we evaluate our pro-
posed models and state-of-the-art methods using different datasets
with various density levels as follows:

• Movielens [41]: It is a widely adopted benchmark dataset for
collaborative filtering evaluation. We use two versions of this
benchmark dataset, namely MovieLens100k (or ML-100k) and
MovieLens1M (or ML-1M).

• Netflix Prize 3: It is a real-world dataset collected by Netflix.
This dataset was collected from 1999 to 2005, and consists of
463,435 users and 17,769 items with 56.9M of interactions. Since
the dataset is extremely large, we subsample the Netflix dataset
by randomly picking one-month data for evaluation.

• Epinions [35] 4: It is an online rating dataset where users can
share product feedback by giving explicit ratings and reviews.

In preprocessing preparation, we adopted a popular k-core prepro-
cessing step [11, 25, 52] (with k-core = 5) to filter out inactive users
with less than five ratings and items which are consumed by less than
five users. Since ML-100k and ML-1M are already preprocessed,
we only apply 5-core preprocessing step on the Netflix and Epinions
datasets. We also binarize the rating scores as implicit feedback by
converting all observed rating scores as positive interactions and the
remaining as negative interactions. The statistics of the four datasets
are summarized in Table 1.
Shopping basket-based recommendation task: We use two real-
world transaction datasets as follows:

• IJCAI-15 5: It consists of shopping logs of users from Tmall 6.
Since the original dataset is extremely large scale. We subsample
IJCAI-15 by randomly picking 20k transactions for evaluation.

• Tafeng 7: It is a grocery store transaction data. It contains four
month transaction data from November 2000 to February 2001
by T-Feng supermarket.

3https://www.netflixprize.com/
4http://www.trustlet.org/downloaded_epinions.html
5https://tianchi.aliyun.com/datalab/dataSet.htm?id=1
6https://www.tmall.com
7http://stackoverflow.com/questions/25014904/download-link-for-ta-feng-grocery-
dataset

Table 1: Statistics of the four datasets in the general recommen-
dation task.

Statistics ML-100k ML-1M Netflix Epinions

of users 943 6,040 1,888 23,137
of items 1,682 3,706 3,724 23,585
of interactions 100,000 1,000,209 103,254 461,982
Density (%) 6.3% 4.5% 1.5% 0.08%

Table 2: Statistics of the two real-world transactional datasets
in the shopping basket-based recommendation task.

Statistics IJCAI-15 Tafeng

of users 2,433 22,851
of items 4,534 22,291
avg # of items in a transaction 6.28 9.28
of generated instances 15,422 523,653
Density (%) 0.14% 0.10%

In both IJCAI-15 and Tafeng datasets, each user behavior is
logged under four types of actions: click, add-to-cart, purchase, and
add-to-favourite. We consider all the four types as the click action.
We only keep transactions with at least five items. This is because
we will take one item out for testing, another item for development.
In the remaining three items, one will be taken out as a target item
and the two items will be used as the context items. Attentive scores
will be assigned to the context items. In each of original transactions,
we generate data instances of the format < c,vc > where vc is the
target/predicting item and c is a set of all other items in the same
transaction with vc . In particular, in each transaction t , each time we
pick one item out as a target item and leave the rest of items in t as
corresponding context items. Subsequently, for each transaction t
containing |t | items, we can generate |t | data instances. The statistics
of the two transactional datasets are summarized in Table 2.

For an easy reference, we call (ML-100k, ML-1M, Netflix, Epin-
ions) as Group-1 dataset and (IJCAI-15, Ta-Feng) as Group-2 datasets.

5.2 Baselines and State-of-the-art Methods
We compared our proposed models against several strong baselines
in the general recommendation task as follows:

• ItemKNN [42]: It is an item neighborhood-based collaborative
filtering method. It exploited cosine item-item similarities to
produce recommendation results.

• Bayesian Personalized Ranking (MF-BPR) [39]: It is a state-
of-the-art pairwise matrix factorization method for implicit feed-
back datasets. It minimizes

∑
i
∑
j+, j− −loдσ (u

T
i vj+ - uTi vj−) +

λ(| |ui | |
2 + | |vj+ | |

2) where (ui , vj+) is a positive interaction and
(ui , vj−) is a negative sample.

• Sparse LInear Method (SLIM) [36]: It learns a sparse item-item
similarity matrix by minimizing the squared loss | |A −AW | |2 +
λ1 | |W | | + λ2 | |W | |2, where A is a m × n user-item interaction
matrix and W is a n ×n sparse matrix of aggregation coefficients
of context items.

• Collaborative Metric Learning (CML) [15]: It is a state-of-
the-art collaborative metric-based model that utilizes Euclidean

distance to measure similarities between users and items. For
fair comparison, we learn CML with BPR loss by minimizing
−

∑
i, j+, j− loд(σ (| |ui − vj− | |

2
2 − ||ui − vj+ | |

2
2)), where | | · | |22 is

a squared Euclidean distance, (ui , vj+) is a positive interaction
and (ui ,vj−) is a negative sample.

• Neural Collaborative Filtering (NeuMF++) [12]: It is a state-
of-the-art matrix factorization method using deep learning archi-
tecture. We use a pre-trained NeuMF to achieve its best perfor-
mance, and denote it as NeuMF++.

• Collaborative Memory Network (CMN++) [7]: It is a state-
of-the-art memory network based recommender. Its architecture
follows traditional user neighborhood based collaborative filter-
ing approaches. It adopts a memory network to assign attentive
weights for other similar users.

Even though our proposed methods do not model the order of con-
sumed items in the user’s purchase history (e.g. rigid orders of items),
since we consider latest s items as the context items to predict the
next item, we still compare our models with some key sequential
models to further show our models’ effectiveness as follows:

• Personalized Ranking Metric Embedding (PRME) [8]:
Given a user u, a target item j, and a previous consumed item
k, it models a personalized first-order Markov behavior with
two components: dujk = α | |vu − vj | |

2 + (1 − α) | |vk − vj | |
2,

where | | · | |22 is a squared L2 distance. Then PRME is learned by
minimizing BPR loss.

• PRME_s: It is our extension of PRME, where the distance be-
tween the target item j and the previous consumed item k is
replaced by the average distance between j and each of previous
s items: dujs = α | |vu −vj | |

2 + (1 − α) 1
|s |

∑
k ∈s | |vk −vj | |

2. We
use BPR loss to learn PRME_s.

• Translation-based Recommendation (TransRec) [9]: It uses
first-order Markov and considers a useru as a translator of his/her
previous consumed item k to a next item j. In another word,
prob (j |u,k) ∝ βj −d (u +vk −vj) where βj is an item bias term,
d is a distance function (e.g. L1 or L2 distance). We use L2
distance because it was shown to perform better than L1 [9].
TransRec is then learned with BPR loss.

• Convolutional Sequence Embedding Recommendation
(Caser) [49]: It is a state-of-the-art sequential model. It uses
convolution neural network with many horizontal and vertical
kernels to capture the complex relationships among items.

The strong sequential baselines above surpassed many other sequen-
tial models such as: TransRec outperformed FMC[40], FPMC [40],
HRM [55]; Caser surpassed GRU4Rec [14] and Fossil [10], so we
exclude them in our evaluation.
Comparison: In the general recommendation task, we compare
our proposed models with all ten strong baselines listed above. In
the shopping basket-based recommendation task, since the sequen-
tial models often work better than general recommendation-based
models (see Table 3), we only compared our proposed models with
sequential baselines. We name general recommendation baselines
(i.e. ItemKNN, BPR, SLIM, CML, NeuMF++, CMN++) as Group-1
baselines, and call sequential baselines (i.e. PRME, PRME_s, Tran-
sRec, Caser) as Group-2 baselines for an easy reference.

5.3 Experimental Settings
Protocol: We adopt the widely used leave-one-out setting [12, 60],
in which for each user, we reserve her last interaction as the test
sample. If there are no timestamps available in the dataset, then
the test sample is randomly drawn. Among the remaining data, we
randomly hold one interaction for each user to form the development
set, while all others are utilized as the training set. Since it is very
time-consuming and unnecessary to rank all the unobserved items
for each user, we follow the standard strategy to randomly sample
100 unobserved items for each user. Then, we rank them together
with the test item [12, 19].
Assigning item orders: Sequential models need rigid orders of
consumed items but consumed items in the same transaction (in
IJCAI-15 and TaFeng datasets) are assigned the same timestamp
of the transaction containing these items. Hence, we assigned the
item timestamps where the orders of items are kept as in the original
dataset. This may give credits to sequential models but not our
methods (because our methods will use all consumed items in the
same transaction as context items and do not model the item orders).
Hyper-parameters selection: We perform a grid search for the
embedding size from {8, 16, 32, 64, 128} and regularization terms
from {0.1, 0.01, 0.001, 0.0001, 0.00001} in all the models. We select
the best number of hops for CMN++ and our SDM from {1, 2, 3, 4}.
In NeuMF++, we select the best number of MLP layers from {1, 2, 3}.
In our models, we fix the batch size to 256. We adopt Adam optimizer
[18] with a fixed learning rate of 0.001. Similar to CMN++ and
NeuMF++, the number of negative samples is set to 4. We use
one layer perceptron for SDP (more complex datasets may need
more than one layer to get better results). We initialize the user
and item embeddings using N (µ = 0,σ = 0.01), and initialize
the edge-weights layers using He normal initializer (e.g. w (o) , we ,
wu in Eq. (6), (18), (21), respectively). In the four datasets used
in general recommendation task (e.g ML-100k, ML-1M, Netflix,
Epinions), to avoid too many zero paddings for users with a smaller
number of consumed items or too many context items are kept in
the memory, which unnecessarily slow down the model’s execution,
we follow [50] to limit the number of context items using latest s
consumed items. We search s in {5, 10, 20}. In the two shopping
basket-based recommendation datasets (i.e. IJCAI-15 and TaFeng),
since the maximum number of items in a transaction is small (e.g.
13 in IJCAI-15, and 18 in TaFeng), we consider all the other items
in the same transaction with the target item as its context items. All
the hyper-parameters are tuned using the development dataset. Our
source code is available at: https://github.com/thanhdtran/SDMR.
Evaluation Metrics: We evaluate all models’ performance by two
widely used metrics: Hit Ratio (hit@k), and Normalized Discounted
Cumulative Gain (NDCG@k), where k is a truncated number or
top-k item recommendation. Intuitively, hit@k shows whether the
test item is in the top-k list or not, while NDCG@k accounts for the
position of the hits by assigning higher scores to the hits at top ranks
and downgrading the scores to hits by loд2 at lower ranks.

5.4 Experimental Results
RQ1: Overall results in general recommendation task: The per-
formance of our proposed models and the baselines are shown in
Table 3. First, we observe that SDP significantly outperformed BPR

in all four datasets in Group-1 datasets, improving hit@10 from
8.33∼41.19%, and NDCG@10 from 10.44∼44.56%. Even though
SDP and BPR shared the same loss function, the difference between
them is SDP measured a signed distance score between a target user
and a target item via a MLP which modeled a non-linear interaction
between them, while BPR went along with Matrix Factorization
that exploited inner product. This result confirms the effectiveness
of using signed distance based similarity over inner product in the
general recommendation task. Second, we compare SDP with CML.
CML worked by trying to minimize the squared Euclidean distance
scores between target users and target items. Our SDP, in another
hand, works by minimizing signed distance scores of non-linear in-
teractions (via non-linear activation functions) between target users
and target items. We observe that SDP performed better than CML
in all Group-1 datasets, improving hit@10 from 8.33∼11.19%, and
NDCG@10 from 7.06∼12.24%. On average, SDP improved hit@10
by 7.5% and NDCG@10 by 9.5% compared to CML. Our SDP even
gain competitive results compared to NeuMF++ and CMN++. On
average, SDP is just slightly worse than NeuMF++ and CMN++ by
-2.67% for hit@10, and -1.68% for NDCG@10. All of these results
show the effectiveness of using signed distance in our SDP model.

Next, we compare SDM with neighborhood-based baselines. Both
SLIM and item-KNN used previously consumed items of a user to
make the prediction for the next item. SDM significantly outper-
formed both baselines, improving hit@10 from 20.53∼130.92%
and NDCG@10 from 39.05∼106.35% compared with SLIM. It is
an obvious result because the neighborhood-based baselines barely
measured linear similarities between the target item and the user’s
consumed items. In contrast, our SDM produced signed distance
scores and assigned personalized metric-based attention weights to
each of consumed items that contribute to the target item.

We then compare SDM with CMN++ and NeuMF++. SDM out-
performed CMN++ in all Group-1 datasets, improving hit@10 from
11.71∼35.93% and NDCG@10 from 26.51∼43.38%. On average, it
improves hit@10 by 18.63% and NDCG@10 by 32.84% compared
to CMN++. This result shows the effectiveness of our personal-
ized metric-based attention with signed distance and item-based
neighborhood design over the traditional inner product-based atten-
tion in a user-based neighborhood design in CMN++. SDM also
outperformed NeuMF++, improving hit@10 from 13.97∼34.35%,
and NDCG@10 from 27.42∼42.34%. On average, in all Group-1
datasets, SDM outperformed all the baselines in “General Recom-
menders” (Group 1), improved hit@10 by 18.13% and NDCG@10
by 32.58% compared to the best baseline in Group 1.

Finally, we look at the performance of SDMR model, which is
the proposed fusion of SDP and SDM. Compared to SDM, our
SDMR insignificantly downgrades SDM on hit@10 measurement
with a very small amount, but it does help a lot in refining the
ranking of items and boosting NDCG@10 results. As shown in
Table 3, SDMR improved from 8.46∼29.20% for NDCG@10, and
by 17.37% for NDCG@10 on average compared to SDM in Group-1
datasets. SDMR also surpassed all the methods in Group 1. On
average, SDMR improved hit@10 by 17.18% and NDCG@10 by
55.20% compared to the best model in Group 1.

We also compared our models with some strong sequential models
in Table 3. Sequential models exploited consuming time of items
and model their rigid orders, which often lead to a much improved

Table 3: General Recommendation Task: Overall performance of the baselines, and our proposed SDP, SDM, and SDMR on four
datasets. The last four lines show the relative improvement of the SDM and SDMR over the best baseline method in General Recom-
menders (Group 1) and Sequential Recommenders (Group 2), respectively.

Method type Method ML-100k ML-1M Netflix Epinions

hit@10 NDCG@10 hit@10 NDCG@10 hit@10 NDCG@10 hit@10 NDCG@10

General
Recommenders
(Group 1)

Item-KNN 0.166 0.073 0.235 0.110 0.039 0.019 0.121 0.096
SLIM 0.520 0.298 0.677 0.420 0.358 0.212 0.249 0.189
MF-BPR 0.554 0.316 0.595 0.352 0.352 0.193 0.384 0.232
CML 0.596 0.326 0.662 0.390 0.447 0.254 0.376 0.237
NeuMF++ 0.623 0.341 0.716 0.438 0.509 0.279 0.428 0.274
CMN++ 0.620 0.344 0.729 0.442 0.523 0.293 0.423 0.272

Sequential
Recommenders
(Group 2)

PRME 0.638 0.381 0.724 0.486 0.509 0.329 0.538 0.346
PRME_s 0.674 0.398 0.734 0.491 0.539 0.348 0.380 0.244
TransRec 0.684 0.402 0.770 0.524 0.511 0.345 0.551 0.357
Caser 0.674 0.386 0.826 0.606 0.480 0.253 0.326 0.268

Ours
SDP 0.616 0.349 0.694 0.424 0.497 0.279 0.416 0.266
SDM 0.713 0.435 0.816 0.584 0.584 0.379 0.575 0.390
SDMR 0.695 0.562 0.810 0.662 0.592 0.449 0.568 0.423

Compared to
Group 1

Imprv. of SDM 14.54% 26.51% 11.93% 32.13% 11.71% 29.32% 34.35% 42.34%
Imprv. of SDMR 11.65% 63.44% 11.11% 49.77% 13.24% 53.20% 32.71% 54.38%

Compared to
Group 2

Imprv. of SDM 4.24% 8.21% -1.21% -3.63% 8.35% 8.91% 4.36% 9.24%
Imprv. of SDMR 1.61% 39.80% -1.94% 9.24% 9.83% 29.02% 3.09% 18.49%

Table 4: Shopping basket-based Recommendation Task: Over-
all performance of the baselines, and our proposed models on
two datasets. The last two lines show the relative improvement
of the SDM and SDMR over the best baseline.

Method IJCAI-15 Ta-Feng

hit@10 NDCG@10 hit@10 NDCG@10

PRME 0.276 0.177 0.594 0.365
PRME_s 0.229 0.133 0.590 0.355
TransRec 0.262 0.168 0.622 0.401
Caser 0.173 0.096 0.605 0.373

SDP 0.323 0.201 0.633 0.401
SDM 0.316 0.189 0.646 0.439
SDMR 0.336 0.222 0.627 0.559

Imprv. of SDM 14.49% 6.78% 3.86% 9.48%
Imprv. of SDMR 21.74% 25.42% 0.80% 39.40%

performance compared to general recommendation models in Group-
1 baselines. As such, compared to the best sequential baseline model,
on average, SDM improves hit@10 by 3.94% and NDCG@10 by
5.68% , and SDMR improves hit@10 by 3.15% and NDCG@10 by
24.14% compared to the best sequential model reported in Table 3.
Overall results in shopping basket-based recommendation task:
Table 4 shows the performance of our models and sequential base-
lines in Group-2 datasets. Again, our models outperformed all the
sequential baselines. On average, SDM improved hit@10 by 9.2%
and NDCG@10 by 8.1%, SDMR improved hit@10 by 11.3% and
NDCG@10 by 32.4% compared to the best reported baseline.

5.5 RQ2: Understanding our multi-hop
personalized metric-based attention design?

In the previous section, we see that our models outperformed many
strong baselines in six different datasets of the two different recom-
mendation problems. In this part, we explore why did we achieve

0 2 4
PMI score

0.00

0.25

0.50

0.75

At
te

nt
iv

e
sc

or
e

(a) Hop 1.

0 2 4
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(b) Hop 2.

0 2 4
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(c) Hop 3.

0 2 4
PMI score

0.00

0.25

0.50

0.75

1.00

At
te

nt
iv

e
sc

or
e

(d) Hop 4.
Figure 5: ML-100K: Scatter plots of PMI scores and attentive
scores generated by SDM with h hops (h={1, 2, 3, 4} from left
to right). The red lines are the linear trend lines. The Pearson
correlation between two scores increases when h increased.

those better results? As “attention is all you need” [54], the core
reason brought us an surpassed performance accredit to the metric-
based attention which are further refined via multi-hop design. There-
fore, we want to explore quantitatively and qualitatively how our
attention with multi-hop design worked by answering two smaller re-
search questions: (i) what did our metric-based attention with multi-
hop design learn?, (ii) did the metric-based attention with multi-hop
design improve recommendation results? Without a special mention,
since our SDMR model just learned a combination between SDP and
SDM without re-learning the learned-already parameters in SDP and
SDM, we explore SDM in this section to understand how attention
with multi-hop design works. Note that we conduct this analysis for
ML-100k only due to space limitation and the availability of movies
genre in ML-100k (for visualization in Figure 7).
What did our metric-based attention with multi-hop design learn?
To answer this research question, we first measure the point-wise
mutual information (PMI) between two certain items j and k as:

PMI (j,k) = loд
P (j,k)

P (j) × P (k)
(23)

where P (j,k) is the joint probability between two items j and k,
which shows how likely j and k are co-preferred (P (j,k) = #(j,k)

|D | ,
where D denotes a collection of all item-item pairs, and |D | refers to

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(a) ML-100K.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

0.8

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(b) ML-1M.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(c) Netflix.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(d) Epinions.

8 16 32 64 128
embedding size

0.0

0.1

0.2

0.3

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(e) IJCAI-15.

8 16 32 64 128
embedding size

0.0

0.2

0.4

0.6

hi
t@

10

hop 1
hop 2
hop 3
hop 4

(f) TaFeng.

Figure 6: Comparison of varying the number of hops regarding different embeddings sizes in the six datasets.

the total number of item-item co-occurrence pairs in D). Similarly,
P (j) and P (k) are the probabilities of the item j and k appears in
D, respectively (e.g. P (j) = #(j)

|D | , P (k) =
#(k)
|D |). Intuitively, a PMI

score between two items shows how likely the two items are co-
purchased/co-preferred. The higher the PMI score between j and k
is, the more likely the user will purchase j if k was purchased before.

We denote SDM-h is the SDM model with h hops. Now, given
a target item j and the user’s context items k, SDM-h will assign
attentive scores for all (j,k) pairs. We also get PMI scores (from
Eq. (23)) of (j,k) pairs. Next, we plot a scatter plot of PMI scores
and attentive scores for all (j,k) pairs to see the relationship between
the two scores. Our results for ML-100k dataset is shown in Figure 5.

In Figure 5, the Pearson correlation between PMI scores and
attentive scores are 0.059, 0.097, 0.143, and 0.146 for SDM-1, SDM-
2, SDM-3 SDM-4, respectively. It indicates that as we increase the
number of hops in SDM model, PMI scores and attentive scores are
more positively correlated. In another word, as we increase number
of hops, our metric-based attention with multi-hop design will assign
higher weights for co-purchased items, which is what we desire.

Furthermore, scatter plots in Figure 5a presents that there is a
high density of points with small attentive scores. This indicates
that attention in SDM-1 is distributed to several items (which is
somewhat close to equally focusing on context items). However,
when we increase the number of hops h, the density spreads up to
the top, indicating that the model tends to give a higher attention to
some context items, which can be more relevant than others. This
observation is consistent with “learning to attend” in [2, 59].
Did the metric-based attention with multi-hop design improve
recommendation results? We answer this research question by
showing the results of SDM model when varying number of hops
h from {1, 2, 3, 4} with different embedding sizes and visualize
attention scores of SDM-h with a random observation as follows:
Varying number of hops with different embedding sizes: The
performance of SDM-h regarding hit@10 with h from {1, 2, 3, 4}
and embedding size from {8, 16, 32, 64, 128} is presented in Figure
6. We see that more hops tend to give additional improvement in
all 6 datasets, except in Tafeng dataset where SDM with more hops
over-fitted. In ML-100k and ML-1M, the optimal number of hops
are 3 or 4. In Netflix, SDM with 3 hops performed well. In Epinions
and IJCAI-15, SDM-4 tends to achieve better results. Overall, the
selection of the number of hops depends on the dataset complexity,
and it varies from datasets to datasets.
Attention Visualization: Lastly, to visualize how the personalized
metric-based attention with multi-hop design works, we chose one
user from ML-100K data. The learned weights at each hop of SDM is
shown in Figure 7. The target item in this example is an action movie
called Fire Down Below (1997). The first two hops of SDM assigned

set of consumed items

Attention Scores

predicting item

action romance action romance action action

Personalized
Weights

Multi-hop
Memory

Figure 7: Multi-hop Attention visualization.

high weights to two romance movies, and the lowest score to the
action movie Money Talks (1997). The 3rd-hop and 4th-hop attention
refined the weights of movies to better reflect the correlations and
similarities w.r.t the target movie. At last, Money Talks (1997) was
assigned with the highest weight 0.386, and the total weights of two
romance movies decreased to less than 0.2. This result shows the
effectiveness of our multi-hop SDM model.

6 CONCLUSION
In this paper, we have studied the top-k recommendation problem
in a signed distance learning perspective. Different from previous
works, we have considered two independent signed distance models
for measuring user-item and item-item similarities respectively via
deep neural networks. Extensive experiments have been performed
on six real-world datasets in general recommendation and shopping
basket-based recommendation task. We presented that our proposed
SDMR outperformed ten baselines in all two recommendation tasks.
To an extension, future works can integrate position embeddings
[54] in our models, which give our models a sense of which posi-
tion they are dealing with, which can further improve our model’s
performance when rigid orders of items are available.

ACKNOWLEDGMENT
This work was supported in part by NSF grant CNS-1755536,
Google Faculty Research Award, Microsoft Azure Research Award,
AWS Cloud Credits for Research, and Google Cloud. Any opinions,
findings and conclusions or recommendations expressed in this ma-
terial are the author(s) and do not necessarily reflect those of the
sponsors.

REFERENCES
[1] Charu C Aggarwal. 2016. Recommender systems. Springer.
[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Daniel Billsus and Michael J Pazzani. 2000. User modeling for adaptive news
access. User modeling and user-adapted interaction 10, 2-3 (2000), 147–180.

[4] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation
with item-and component-level attention. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval.
335–344.

[5] Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio. 2018. Fine-grained attention
mechanism for neural machine translation. Neurocomputing 284 (2018), 171–176.

[6] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation
algorithms. ACM Transactions on Information Systems 22, 1 (2004), 143–177.

[7] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network
for Recommendation Systems. In Proceedings of the 41st ACM International
Conference on Research and Development in Information Retrieval.

[8] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan
Yuan. 2015. Personalized Ranking Metric Embedding for Next New POI Recom-
mendation. In International Joint Conference on Artificial Intelligence, Vol. 15.
2069–2075.

[9] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based rec-
ommendation. In Proceedings of the Eleventh ACM Conference on Recommender
Systems. 161–169.

[10] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In Data Mining (ICDM), 2016 IEEE
16th International Conference on. 191–200.

[11] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. 173–182.

[13] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast
matrix factorization for online recommendation with implicit feedback. In Pro-
ceedings of the 39th International ACM SIGIR conference on Research and Devel-
opment in Information Retrieval. 549–558.

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[15] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of the 26th
International Conference on World Wide Web. 193–201.

[16] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE Inter-
national Conference on. 263–272.

[17] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.
2016. Convolutional matrix factorization for document context-aware recommen-
dation. In Proceedings of the 10th ACM Conference on Recommender Systems.
233–240.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted col-
laborative filtering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. 426–434.

[20] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. 447–456.

[21] Yehuda Koren. 2010. Collaborative filtering with temporal dynamics. Commun.
ACM 53, 4 (2010), 89–97.

[22] Ken Lang. 1995. Newsweeder: Learning to filter netnews. In International
Conference on Machine Learning. 331–339.

[23] Neil D Lawrence and Raquel Urtasun. 2009. Non-linear matrix factorization with
Gaussian processes. In Proceedings of the 26th Annual International Conference
on Machine Learning. 601–608.

[24] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep collaborative filtering via
marginalized denoising auto-encoder. In Proceedings of the 24th ACM Interna-
tional on Conference on Information and Knowledge Management. 811–820.

[25] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. (2018).

[26] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130 (2017).

[27] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommen-
dations: Item-to-item collaborative filtering. IEEE Internet computing 1 (2003),

76–80.
[28] Fei Liu and Julien Perez. 2017. Gated end-to-end memory networks. In Pro-

ceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Papers, Vol. 1. 1–10.

[29] Qiang Liu, Shu Wu, and Liang Wang. 2017. DeepStyle: Learning user preferences
for visual recommendation. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 841–844.

[30] Xinyue Liu, Chara Aggarwal, Yu-Feng Li, Xiaugnan Kong, Xinyuan Sun, and
Saket Sathe. 2016. Kernelized matrix factorization for collaborative filtering.
In Proceedings of the 2016 SIAM International Conference on Data Mining.
378–386.

[31] Yichao Lu, Ruihai Dong, and Barry Smyth. 2018. Coevolutionary Recommenda-
tion Model: Mutual Learning between Ratings and Reviews. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web. 773–782.

[32] Yichao Lu, Ruihai Dong, and Barry Smyth. 2018. Convolutional Matrix Factoriza-
tion for Recommendation Explanation. In Proceedings of the 23rd International
Conference on Intelligent User Interfaces Companion. 34.

[33] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[34] Chen Ma, Peng Kang, Bin Wu, Qinglong Wang, and Xue Liu. 2019. Gated
Attentive-Autoencoder for Content-Aware Recommendation. In Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining.
519–527.

[35] Paolo Massa and Paolo Avesani. 2007. Trust-aware recommender systems. In
Proceedings of the 2007 ACM conference on Recommender systems. 17–24.

[36] Xia Ning and George Karypis. 2011. Slim: Sparse linear methods for top-n
recommender systems. In 2011 11th IEEE International Conference on Data
Mining. 497–506.

[37] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.
2017. Personalizing session-based recommendations with hierarchical recurrent
neural networks. In Proceedings of the Eleventh ACM Conference on Recom-
mender Systems. 130–137.

[38] Parikshit Ram and Alexander G Gray. 2012. Maximum inner-product search using
cone trees. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. 931–939.

[39] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. 452–461.

[40] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[41] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. 1994. GroupLens: an open architecture for collaborative filtering of netnews.
In Proceedings of the 1994 ACM conference on Computer supported cooperative
work. 175–186.

[42] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-
based collaborative filtering recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web. 285–295.

[43] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th
International Conference on World Wide Web. 111–112.

[44] Paul Hongsuck Seo, Zhe Lin, Scott Cohen, Xiaohui Shen, and Bohyung Han.
2016. Hierarchical attention networks. arXiv preprint arXiv:1606.02393 (2016).

[45] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable convo-
lutional neural networks with dual local and global attention for review rating
prediction. In Proceedings of the Eleventh ACM Conference on Recommender
Systems. 297–305.

[46] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for sublinear
time maximum inner product search (MIPS). In Advances in Neural Information
Processing Systems. 2321–2329.

[47] Nitish Srivastava and Ruslan R Salakhutdinov. 2012. Multimodal learning with
deep boltzmann machines. In Advances in Neural Information Processing Systems.
2222–2230.

[48] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. 2015. End-to-end memory
networks. In Advances in Neural Information Processing Systems. 2440–2448.

[49] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. 565–573.

[50] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric
learning via memory-based attention for collaborative ranking. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web. 729–739.

[51] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Multi-Pointer Co-Attention
Networks for Recommendation. arXiv preprint arXiv:1801.09251 (2018).

[52] Thanh Tran, Kyumin Lee, Yiming Liao, and Dongwon Lee. 2018. Regulariz-
ing Matrix Factorization with User and Item Embeddings for Recommendation.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. 687–696.

[53] Aaron Van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep
content-based music recommendation. In Advances in Neural Information Pro-
cessing Systems. 2643–2651.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing Systems. 6000–6010.

[55] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. 2015. Learning hierarchical representation model for nextbasket recom-
mendation. In ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. 403–412.

[56] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent recommender networks. In Proceedings of the tenth ACM inter-
national conference on web search and data mining. 495–503.

[57] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabo-
rative denoising auto-encoders for top-n recommender systems. In Proceedings
of the Ninth ACM International Conference on Web Search and Data Mining.
153–162.

[58] Caiming Xiong, Stephen Merity, and Richard Socher. 2016. Dynamic memory
networks for visual and textual question answering. In International Conference
on Machine Learning. 2397–2406.

[59] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual attention. In International Conference
on Machine Learning. 2048–2057.

[60] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. 2017.
Deep Matrix Factorization Models for Recommender Systems. In Proceeding of
the 26th International Joint Conference on Artificial Intelligence. 3203–3209.

[61] Hanwang Zhang, Yang Yang, Huanbo Luan, Shuicheng Yang, and Tat-Seng
Chua. 2014. Start from scratch: Towards automatically identifying, modeling,
and naming visual attributes. In Proceedings of the 22nd ACM International
Conference on Multimedia. 187–196.

[62] Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and Guillermo Sapiro. 2012.
Kernelized probabilistic matrix factorization: Exploiting graphs and side informa-
tion. In Proceedings of the 2012 SIAM International Conference on Data Mining.
403–414.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Proposed Methods
	4.1 Signed Distance-based Perceptron (SDP)
	4.2 Signed Distance-based Memory Network (SDM)
	4.3 Signed Distance-based Deep Memory Recommender (SDMR)
	4.4 Loss Functions

	5 Empirical Study
	5.1 Datasets
	5.2 Baselines and State-of-the-art Methods
	5.3 Experimental Settings
	5.4 Experimental Results
	5.5 RQ2: Understanding our multi-hop personalized metric-based attention design?

	6 Conclusion
	References

