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Abstract—Crowdsourcing systems enable new opportunities
for requesters with limited funds to accomplish various tasks
using human computation. However, the power of human com-
putation is abused by malicious requesters who create malicious
campaigns to manipulate information in web systems such as
social networking sites, online review sites, and search engines.
To mitigate the impact and reach of these malicious campaigns
to targeted sites, we propose and evaluate a machine learning
based classification approach for detecting malicious campaigns
in crowdsourcing platforms as a first line of defense. Specifically,
we (i) conduct a comprehensive analysis to understand the
characteristics of malicious campaigns and legitimate campaigns
in crowdsourcing platforms, (ii) propose various features to dis-
tinguish between malicious campaigns and legitimate campaigns,
and (iii) evaluate a classification approach against baselines.
Our experimental results show that our proposed approaches
effectively detect malicious campaigns with low false negative
and false positive rates.

I. INTRODUCTION

Crowdsourcing platforms such as Mechanical Turk (MTurk)
and Crowdflower provide a marketplace where requesters
recruit workers and request the completion of various tasks.
Since anyone in the world can be a worker, the labor fees
are relatively low, and workers are available at virtually all
hours of the day. Due to these benefits, requesters have used
crowdsourcing platforms for various tasks such as labeling
datasets, searching a boat from satellite images to find a lost
person, proofreading a document, and adding missing data.

However, some requesters abuse crowdsourcing platforms
by creating malicious campaigns to manipulate search engines,
write fake reviews, and create accounts for additional attacks.
Using crowdsourced manipulation, malicious requesters and
workers can potentially earn hundreds of millions of dollars.
As a result, crowdsourced manipulation threatens the founda-
tion of the free and open web ecosystem by reducing the qual-
ity of online social media, degrading trust in search engines,
manipulating political opinion, and ultimately compromising
the security and trustworthiness of cyberspace [1]–[3].

Prior research [2], [3] identified the threat of malicious
campaigns by quantifying their prevalence in several crowd-
sourcing platforms. Specifically, a large collection of loosely-
moderated crowdsourcing platforms serves as launching pads

for these malicious campaigns. Unfortunately, there is a sig-
nificant gap in our understanding of how to detect malicious
campaigns at the source (i.e., crowdsourcing platforms), which
would mitigate their impact and reach before they influence
targeted sites.

Hence, in this paper we aim to automatically predict and
detect malicious campaigns in crowdsourcing platforms by an-
swering following research questions: What kind of malicious
campaigns exist in crowdsourcing platforms? Can we find
distinguishing patterns/features between malicious campaigns
and legitimate campaigns? Can we develop a statistical model
that automatically detects malicious campaigns?

To answer these questions, we make the following contri-
butions:


 First, we collect a large number of campaigns from popular
crowdsourcing platforms: MTurk, Microworkers, Rapid-
workers, and Shorttask1. Then, we cluster malicious cam-
paigns to understand what types of malicious campaigns
exist in crowdsourcing platforms.


 Second, we analyze characteristics of malicious campaigns
and legitimate campaigns in terms of their market sizes
and hourly wages. Then, we propose and evaluate various
features for distinguishing between malicious campaigns
and legitimate campaigns, and we visualize each feature to
concretely illustrate the differing properties for malicious
and legitimate campaigns.


 Third, we develop a predictive model, and evaluate its
performance against baselines in terms of accuracy, false
positive rate and false negative rate. To our knowledge, this
is the first study to focus on detecting malicious campaigns
in multiple crowdsourcing platforms.

II. RELATED WORK

Since the emergence of crowdsourcing platforms (e.g.,
MTurk and Crowdflower), researchers have studied how to use
crowd wisdom. Wang et al. [4] hired workers to identify fake
accounts in Facebook and Renren. Workers have identified

1MTurk, Microworkers, Rapidworkers and Shorttask represent
www.mturk.com, microworkers.com, rapidworkers.com, and shorttask.com,
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Fig. 1. A campaign description.

improper tasks in a Japanese crowdsourcing site [5] and proof-
read documents in near-real time [6]. Other researchers were
interested in analyzing the demographics of workers [7] and
quantifying the evolution of campaigns/tasks in MTurk [8].
Ge et al. analyzed a supply-driven crowdsourcing marketplace
regarding key features that distinguish “super sellers” from
regular participants [9].

Another research topic is to measure the quality of workers
and outcomes (and determining how to control that quality).
Venetis and Garcia-Molina [10] proposed three scoring meth-
ods such as gold standard, plurality answer agreement, and
Task Work Time to filter low quality answers. A machine
learning technique was applied to detect low quality answerers
[11]. Soberón et al. [12] showed that adding open-ended
questions (i.e., explanation-based techniques) into tasks was
useful for identifying low quality answers.

With the rising popularity of crowdsourcing systems, ma-
licious campaigns and tasks have been created by some re-
questers. To understand the problems, Motoyama et al. [2] in-
troduced possible web service abuse in Freelancer.com. Wang
et al. [3] analyzed two Chinese crowdsourcing platforms and
found that up to 90% of campaigns are malicious campaigns.
Lee et al. [1] found that social networking sites and search
engines were mainly targeted by malicious campaigns. Re-
searchers began analyzing crowdsourced manipulation and the
characteristics of workers in targeted sites such as Facebook
and Twitter. Fayazi et al. [13] proposed a reviewer-reviewer
graph clustering approach based on a Markov Random Field
to identify workers that posted fake reviews on Amazon.

In contrast to this previous research, we collected a large
number of campaigns from four crowdsourcing platforms,
analyzed characteristics of malicious campaigns and legitimate
campaigns, and developed predictive models to automatically
identify malicious campaigns. Our research will complement
existing research base.

III. DATASET

In a crowdsourcing platform, there are two types of users
– (i) a requester and (ii) a worker. A requester is a user
who creates a campaign with detailed instructions for one or
more tasks. Each task is then performed by one worker. If the
requester is satisfied with the worker’s outcome, the requester
will approve it, and compensation (i.e., money) will be passed
to the worker by the crowdsourcing platform.

TABLE I
STATISTICS FOR TASKS AND MARKET SIZES OF MALICIOUS CAMPAIGNS

AND LEGITIMATE CAMPAIGNS.

|Malic. T.| |Legit T.| Malic. M. Legit M.
798,796 2,557,357 $148,911 $179,696

To collect a dataset, we developed a crawler for four popular
crowdsourcing platforms: Amazon Mechanical Turk (MTurk),
Microworkers, Rapidworkers, and Shorttask. The crawler col-
lected campaign listings and detailed campaign descriptions.
We ran the crawler for 3 months between November 2014 and
January 2015, and it collected 23,220 campaigns consisting
of 3,356,153 tasks2. Figure 1 shows a sample campaign
description which contains the number of available tasks,
compensation for each task, estimated time to complete a task,
and task instructions that describe what a worker is supposed
to do.

We define a malicious campaign as one that requires work-
ers to manipulate information in targeted sites such as social
media sites and search engines. For example, a malicious cam-
paign might require workers to post fake reviews on Amazon,
artificially create backlinks to boost a specific website’s search
engine ranking, or “Like” a specific Facebook page.

Using this definition, two annotators manually labeled each
campaign in our dataset as a malicious campaign or a legiti-
mate campaign, based on the campaign description. When the
two annotators disagreed about a particular campaign’s label,
a third annotator labeled the campaign. The annotators made
the same labeling decision on 23,079 out of 23,220 campaigns,
achieving 99.4% agreement.

Our collected dataset consisted of 5,010 malicious cam-
paigns and 18,210 legitimate campaigns. Each campaign con-
tained 145 tasks on average. Overall, the malicious campaigns
contained about 800K tasks.

IV. CHARACTERISTICS OF MALICIOUS CAMPAIGNS AND
LEGITIMATE CAMPAIGNS

Now we turn our attention to analyzing characteristics of
malicious campaigns and legitimate campaigns in the crowd-
sourcing platforms.

Tasks and market sizes. First, we calculated the number of
tasks associated with malicious campaigns and legitimate cam-
paigns, and then, we measured the market sizes for malicious
and legitimate campaigns. To estimate the market size for a
collection of malicious and legitimate campaigns, we used the
following equation:

MarketSizepCq �
ņ

i�1

rpiq � countpiq (1)

, where C is a set of malicious or legitimate campaigns
tc1, c2, c3...cnu in crowdsourcing platforms, n is the number
of malicious or legitimate campaigns, rpiq is the reward (i.e.,

2A campaign contains multiple tasks, and each task is assigned to one
worker.



TABLE II
GOALS AND MEDIAN VALUES OF MALICIOUS CAMPAIGN CLUSTERS.

Campaign Goal |Malic. C.| % ETC (min) Reward $ / hour
Social network associated (Review, Link, Share, Retweet and Like) 2,987 60 33.5 $0.45 $2.13
Search and click 863 17 8 $0.22 $2.65
Search and visit 654 13 5 $0.21 $3.85
Add a comment 197 4 8 $0.31 $2.91
Register in a forum and post a message 168 3 12 $0.35 $1.02
Create a new pin at Pinterest 96 2 3 $0.11 $2.20
Download and install a new application 45 1 12.5 $0.81 $4.50
Average 12 $0.35 $2.75

compensation) per task for campaign i, and countpiq is the
number of tasks associated with campaign i.

As shown in Table I, the malicious tasks for the four crowd-
sourcing platforms amounted to 45% of the entire market size,
while the number of malicious tasks only represented 24% of
the total campaign tasks. This analytical result reveals that the
reward per malicious task is much higher than the reward per
legitimate task.

Hourly wages. Next, we concretely evaluate if the hourly
reward for malicious campaigns is actually higher than the
hourly reward for legitimate campaigns. A campaign’s descrip-
tion contains estimated time to complete (ETC) information
and a reward per task. We calculated the hourly wage for
each campaign using reward per task�60

ETC because ETC’s unit
of measurement is a minute. The median hourly wage in
malicious campaigns ($2.48) is larger than the median hourly
wage in legitimate campaigns ($1.88). One explanation for this
result is that malicious requesters provide higher rewards to
workers so that they can attract these workers, who may have
ethical concerns about these malicious campaings/tasks.

Clustering malicious campaigns. To investigate characteris-
tics of malicious campaigns associated with specific goals, we
clustered the campaigns based on their goals and targeted sites.
From 5,010 malicious campaigns, we extracted a title from
each campaign and tokenized it by unigram. Then, we removed
stop words and measured TF-IDF. Now, each campaign is
represented as a vector based on TF-IDF. Given a list of
vectors, we used a k-means clustering algorithm to cluster
the vectors (i.e., campaigns). To obtain the optimal number
of clusters, we experimented with k values in the range of 2
through 10, and we measured Sum of Squared Error (SSE) for
each value. We found that k � 7 was the optimal cluster size.

After clustering the malicious campaigns, we investigated
every cluster and found objectives for the campaigns in each
cluster as shown in Table II. The median values for time,
reward, and hourly wage are presented in the table. The goals
for most of the campaigns were to manipulate content on
social networking sites (e.g., Google Plus, Twitter, Yahoo An-
swer and Facebook) and manipulate search engine results by
searching a specific keyword and clicking a certain web page
link. “Download and install a new application” campaigns
provided workers with larger compensation per hour than the
other campaigns.

TABLE III
THE FIVE MOST TARGETED SITES BY MALICIOUS CAMPAIGNS AND THEIR

CORRESPONDING MEDIAN VALUES.

|Malic. C.| % Reward ETC(min) $/hour
Google 902 18 $0.21 6.0 2.3
Twitter 600 12 $0.16 7.5 1.9
Instagram 210 4 $0.13 6.5 1.0
Facebook 154 3 $0.35 7.0 3.0
Youtube 153 3 $0.20 9.5 2.2

To identify the sites that were targeted the most by malicious
campaigns, we extracted a list of the top 500 companies from
Alexa, and we searched for each of those company names
(and company hostnames) in malicious campaign descriptions.
Table III shows the five most targeted sites. 902 (18%)
malicious campaigns targeted Google. Social networking sites
such as Twitter, Instagram, Facebook, and Youtube were also
targeted frequently.

Real-world impact of malicious campaigns. Thus far, we’ve
identified important characteristics of malicious campaigns.
Now, we need to determine if malicious campaigns have any
real-world impact on targeted sites and if existing security
algorithms/systems can detect manipulations in the targeted
sites. To investigate these issues, we tracked 29 malicious
campaigns targeting Facebook in which workers manipulated
Facebook likes. We collected daily snapshots of the malicious
campaigns from crowdsourcing platforms and daily snapshots
of the targeted Facebook pages. The 29 malicious campaigns
consisted of 8,268 tasks, each task required adding one fake
Like. Out of 8,268 fake likes, 7,160 of the likes were success-
fully attributed to the target pages when we checked those
pages later, which means only 1,108 (13.4%) of the fake likes
were deleted by the Facebook security team.

Figure 2 shows an example of the malicious campaigns
manipulating the number of Facebook likes. The left figure
shows the campaign description containing a total number of
tasks, the number of available tasks, and task instructions for
workers. 800 of the campaign’s tasks were completed within
4 days. The middle figure and right figure show the number
of completed tasks reported to a requester and the number of
fake likes completed by workers for the targeted Facebook
page. We can clearly observe that the middle and right figures
show similar temporal patterns. Out of 800 likes, 741 likes



Fig. 2. Consequence of manipulating the number of likes in Facebook.

Fig. 3. Cumulative distribution function of features by class (�: legitimate campaigns, �: malicious campaigns).

remained on the Facebook page, which means Facebook only
labeled 59 (7%) likes as “fake” likes.

This example and the previous analysis (for 29 fake lik-
ing campaigns) show that malicious campaigns have a real-
world impact on targeted sites, and current security systems
are unable to detect most of the manipulated content. The
previous work [14] also confirmed that Twitter safety team
only detected 24.6% of fake followers. These results motivated
us to investigate an automated approach for detecting mali-
cious campaigns in crowdsourcing platforms using predictive
models.

V. FEATURES

In this section, we describe proposed features for building
malicious campaign classifiers. To build a universal classifier
which can be applied to any crowdsourcing platform regardless
what information is available, we proposed and extracted
commonly available features across the four crowdsourcing
platforms. Our proposed features are reward, number of tasks,
estimated time to complete (ETC), hourly wage, number of
URLs in task instruction, Number of URLs in task instruction

Number of words in task instruction ,
number of words in a task title, number of words in task

instruction, and text features extracted from task title and task
instruction.

To avoid the overfitting problem by removing features
that are too similar, we measured the Pearson correlation
coefficient of each pair of the first 8 features excluding
text features. We kept the 8 features because there was no
significant correlation.

From task title and task instruction, we extracted text
features as follows: (i) first, we removed stopwords from
the title and task instruction, and then, we applied stemming
to them; (ii) second, we extracted unigrams, bigrams, and
trigrams from the text; (iii) third, we measured χ2 values
for the extracted unigram, bigram, and trigram features; (iv)
finally, we only used text features with positive χ2 values.
Through this process, we used thousands of text features.

Next, Figure 3 shows cumulative distribution functions
(CDFs) for malicious campaigns and legitimate campaigns.
Interestingly, requesters for 80% of the legitimate campaigns
paid less than one dollar to each worker in terms of hourly
wage, while requesters for 10% of the malicious campaigns
paid the same hourly wage to workers. This suggests that
performing malicious campaigns was more profitable, which
is consistent with our previous results.



Malicious campaigns also contain a larger number of tasks
than most legitimate campaigns, and malicious campaigns
have shorter ETC than legitimate campaigns. Task instructions
in malicious campaigns contain more URLs than legitimate
campaigns, which suggests that malicious campaigns require
workers to access external websites (potentially targeted sites)
more often.

Finally, malicious campaigns have shorter titles and task
instructions than legitimate campaigns. This observation might
indicate that some of the legitimate campaigns are more com-
plicated to perform and require longer ETC. Overall, the CDFs
illustrate distinct differences between malicious campaigns and
legitimate campaigns.

VI. EXPERIMENTS

In the previous section, we observed that malicious cam-
paigns and legitimate campaigns have different characteristics.
In this section, we build classifiers to detect malicious cam-
paigns by exploiting these differences.

A. Detecting Malicious Campaigns

As we mentioned in Section III, we collected campaign de-
scriptions for 3 months between November 2014 and January
2015. The dataset consists of 18,210 legitimate campaigns
and 5,010 malicious campaigns. We built and tested statis-
tical models with 10-fold cross validation. We compared the
performance of three classification algorithms: Naive Bayes,
J48, and Support Vector Machine (SVM).

We compared our statistical models/classifiers with follow-
ing baselines: (i) majority selection approach which always
predicts a campaign’s class as the majority instances’ class
(i.e., a legitimate campaign in the dataset); (ii) URL-based
filtering approach which classifies a campaigns as a malicious
campaign if its description contains at least one URL whose
host name is one of top K sites; and (iii) principal component
analysis (PCA) approach, an unsupervised machine learning
technique, inspired from the previous work [15]. In PCA
approach, we projected campaigns (using the same features
with our classifiers) onto the normal and residual subspaces
to classify malicious and legitimate campaigns. The space
spanned by top principal components is the normal subspace
and the remaining space is known as residual subspace. From
our dataset, we achieved 85% variance from the top 35
principal components out of 1,835 components. We computed
L2 norm and set the squared prediction error as the threshold
value to find the malicious campaigns. We changed the thresh-
old value from 1% to 50% by 1% increment each time to get
the best classification result. Campaigns, whose L2 norm was
greater than the threshold value, were classified as malicious
campaigns.

To evaluate the performance of classifiers, we used follow-
ing evaluation metrics: accuracy, false positive rate (FPR) and
false negative rate (FNR). FPR means malicious campaigns
were misclassified as legitimate campaigns while FNR means
legitimate campaigns were misclassified as malicious cam-
paigns.

TABLE IV
CLASSIFICATION RESULTS.

Approach Accuracy FPR FNR
Majority Selection 78.4% 1 0
URL-based filtering@100 72.4% 0.708 0.157
URL-based filtering@500 72.3% 0.688 0.164
URL-based filtering@1000 71.9% 0.635 0.183
PCA - 12% threshold 85.2% 0.999 0.031
our Naive Bayes 89.0% 0.044 0.147
our J48 99.1% 0.023 0.058
our SVM 99.2% 0.019 0.055

In experiments, we ran majority selection approach, URL-
based filtering approach at top 100, 500 and 1000 sites,
PCA approach, and our three classification approaches (Naive
Bayes, J48 and SVM). Table IV shows experimental results
of the baselines and our classification approaches. Majority
selection approach achieved 78.4% accuracy, 1 FPR and 0
FNR, URL-based filtering@100 achieved 72.4% accuracy,
0.708 FPR and 0.157 FNR, and PCA approach with 12%
threshold (only reporting the best result) achieved 85.2%
accuracy, 0.999 FPR and 0.031 FNR. Overall, our SVM-based
classifier significantly outperformed the other approaches,
achieving 99.2% accuracy, 0.019 FPR and 0.055 FNR, and
balancing between low FPR and low FNR.

B. Robustness of Our Proposed Approach

In the previous experiment, we learned SVM classifier
achieved the best prediction results for detecting malicious
campaigns. Now, we analyze (i) how much training data we
need to achieve a high prediction rate and (ii) whether a
predictive model (i.e., a classifier) would remain robust over
time.

To investigate these issues, we split the dataset chronolog-
ically based on weeks (i.e., the 3 month data was split into
12 weeks). Then, we trained a SVM classifier using the first
week of data, and we used the classifier to test the data for
each of the next weeks. Next, we added the following week’s
data (e.g., the second week of data) into the training set and
tested the data for each of the next weeks. Incrementally, we
added each week’s data to the training set until the training
set included data for the first 11 weeks.

Figure 4 shows experimental results for macro-scale and
micro-scale views of our approach3. In particular, Figure 4(a)
shows experimental results of the 2nd week to the 12th week
in a macro-scale view. When we used the first week data as
a training set and applied a classifier to each of the following
weeks, the classifier achieved low accuracy. However, when
we added one more week of data to a training set (i.e., the
training set contained the first and second week of data), the
classifier achieved significantly high accuracy. Note that 7th
testing week’s classification results were slightly lower than
earlier testing weeks because there were very small number
of legitimate campaigns posted in the 7th week (e.g., 62%

3We did not show FPR and FNR lines because of the limited space.



(a) A macro-scale view between the 2nd and 12th
weeks.

(b) A micro-scale view between the 3rd and 12th weeks.

Fig. 4. As the training set size increases, the detection rate for malicious campaigns and legitimate campaigns also increases.

malicious campaigns and 38% legitimate campaigns in the 7th
testing week vs. 11% malicious campaigns and 89% legitimate
campaigns in the 6th testing week). We conjecture that the
7th week is a week containing Christmas and New Year
holidays, so very less number of legitimate campaigns were
created while almost same number of malicious campaigns
was created compared with the 6th week.

Figure 4(b) shows experimental results in a micro-scale
view by removing the first week training result (i.e., the
classifier that was only trained with a single week of data).
Based on this figure, we clearly observe that a SVM classifier
based on data for the first 2 weeks achieved high accuracy even
though the performance was up and down over time. Overall,
the lowest accuracy, highest FPR and highest FNR among all
the cases were 93.4%, 0.19, 0.03, respectively. Based on these
experimental results, we conclude that two weeks of data is
enough to build an effective predictive model for identifying
malicious campaigns. We also conclude that our proposed
classification approach consistently and robustly worked well
over time.

VII. CONCLUSION

In this paper, we analyzed characteristics of malicious
campaigns and legitimate campaigns. The median hourly
wage in malicious campaigns ($2.48) was larger than the
median hourly wage in legitimate campaigns ($1.88), tempting
workers to perform malicious campaigns in targeted sites
such as social networking sites, online review sites, and
search engines. To measure the real-world impact of malicious
campaigns, we selected Facebook Liking campaigns and found
that Facebook caught only 13% fake likes. This suggests that
current defense systems in targeted sites are inadequate and
potentially undetected malicious campaigns are deteriorating
information quality and trust.

To overcome this problem, we proposed features which were
distinguished between malicious campaigns and legitimate
campaigns. Then, we built malicious campaign classifiers
based on the features for mitigating the impact and reach
of the malicious campaigns to targeted sites. Our classifiers
outperformed the baselines – majority selection, URL-based
filtering and PCA approaches –, achieving 99.2% accuracy,
0.019 FPR and 0.055 FNR.
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