

Appendix A

A Linear Algebra and Eigenproblems

A working knowledge of linear algebra is key to understanding many of the issues raised in

this work. In particular, many of the discussions of the details latent semantic indexing and

singular value decomposition assume an understanding of eigenprolems. While a comprehen-

sive discussion of linear algebra is well beyond the scope of this paper, it seems worthwhile to

provide a short review of the relevant concepts. Readers interested in a deeper discussion are

referred to [Apostol, 1969] and [Golub and Van Loan, 1989], where most of this material is

derived.

A.1 Gratuitous Mathematics: Definitions of Vector Spaces

A

vector space

 is a set of elements upon which certain operations—namely addition and mul-

tiplication by numbers—can be performed. This includes real numbers, real-valued functions,

n-dimensional vectors, vector-valued functions, complex numbers and a host of others.

Formally, if

V

 denotes a non-empty set of elements;

x

,

y

 and

z

 represent elements from

V

; and

a

 and

b

 are real numbers, then

V

 is a linear space if it satisfies ten axioms:

134

1.

Closure under addition

.

For all

x

 and

y

in

 V

, there exists a unique element in

V

 called their sum, denoted by

x + y

.

2.

Commutative law for addition

.

For all

x

 and

y

in

 V

, it is the case that

x + y

 =

y + x

.

3.

Associative law for addition

.

For all

x, y

and

 z

in

 V

, it is the case that (

x + y

)

 + z

=

x +

(

y + z

).

4.

Existence of a zero element

.

There exists an element in

V

, denoted by

0

 such that

x + 0

=

x

 for all

x

 in

V

.

5.

Existence of negative elements

.

For each

x

in

V

, the element

(-1)x

 has the property that

x + (-1)x

=

0

.

6.

Closure under multiplication by numbers

.

For each

x

in

V

 and real number

a

,

there exists an element in

V

 called their product,
denoted by

 a

x

.

7.

Associative law for multiplication

.

For each

x

in

 V

and real numbers

a

and

 b

, it is the case that

a

(

b

x

)

= (

ab

)

x

.

8.

Distributive law for addition in

V

.

For each

x

in

 V

and real numbers

a

and

 b

, it is the case that (

a

+

b

)

x

=

a

x +

b

x

.

9.

Distributive law for addition of numbers.

For each

x

in

 V

and real numbers

a

and

 b

, it is the case that (

a

+

b

)

x

=

a

x +

b

x

.

10.

Existence of an identity element

.

For each

x

in

V

, it is the case that

1x = x.

where subtraction between two vectors from V and division of an element from V by a real

number are defined in the obvious way.

§A.2 Bases and Components 135

Although we specified that a and b are real numbers, it is worth noting that the theo-

rems that apply to real vector spaces apply to complex vector spaces as well. When the real

numbers in the axioms are replaced with complex numbers, we have a complex vector space.

Generally, whatever the “numbers” are, we refer to them as scalars.

A.2 Bases and Components

Imagine a finite set of elements in a vector space, S. These elements are dependent if there

exists a set of distinct elements in S, x1…xn, and a corresponding set of scalars, c1…cn—that

are all not zero—such that . The elements are independent otherwise. If a set is

independent, it then follows that for all choices of distinct x1…xn, and corresponding scalars,

c1…cn, implies that c1 = … = cn = 0.

A basis is a finite set of elements from a vector space, V, that form an independent set

and span V. In order for a set, x1…xn, to span a vector space, V, it must be the case that

 yields an element of V, for all choices of c1…cn.

A subspace of V is defined as any non-empty subset of V, S, that satisfies the closure

axioms defined in § A.1. If S is a subspace of V, we say that the elements of S span that sub-

space. Note that it is trivially true that if S spans V that it is a subspace of V.

As should be clear from this discussion, if we have a basis for V, we can represent an

element from that space as . Further, c1…cn are uniquely determined by the basis,

x1…xn, and y. The ordered n-tuple (c1…cn) is called the components of y with respect to the

basis, x1…xn. Generally, vector space elements (or vectors for short) are represented by their

components, which are delimited by brackets, []. An element, v, is written as [v1…vn], either

horizontally (a row vector) or vertically (a column vector).

A.3 Inner Products and Norms

A real vector space, V, has an inner product if for all x, y and z from V, and scalar a, there

exists a unique real number (x,y), that satisfies four axioms1:

cixi∑ 0=

cixi∑ 0=

y cixi∑=

y cixi∑=

136

1. Symmetry or Commutativity.

(x,y) = (y,x).

2. Linearity or Distributivity.

(x,y + z) = (x,y) + (x,z).

3. Associativity.

a(x,y) = (ax,y).

4. Positivity.

(x,x) > 0 if x≠≠≠≠0.

In a Euclidean space, the norm of a vector, ||x|| is defined to be the non-negative num-

ber (x,x)1/2. Norms satisfy three properties:

1. Positivity.

||x|| ≥ 0, with equality only when x = 0.

2. Homogeneity.

||ax|| = | a | ||x||.

3. Triangle Inequality.

||x + y|| ≤ ||x|| + ||y||.

A real vector, x, is normalized when ||x|| = 1. It follows from homogeneity that a nor-

malized vector can be constructed from a vector by dividing that vector by its norm.

Notice that the value of the norm of an element depends on the choice of the inner

product. Here, we will usually be concerned with the dot product, the most commonly used

inner product. It is usually denoted x•y. It is defined as: , so the norm would

1. This is one of those cases where the axioms for complex vectors are slightly different than for their real counterparts; how-
ever, we will not discuss this here. The curious reader is invited to skim the references.

x y• xiyi∑=

§A.4 The Matrix 137

be: .Two real vectors, x and y, are orthogonal when x•y = 0 and orthonormal

when x•y = 0 and ||x|| = ||y|| = 1. A set is orthogonal (or orthonormal) when its elements are all

orthogonal (or orthonormal) to each other.

A.4 The Matrix

There are several ways to define a matrix. Formally, a matrix represents any linear function

whose domain and range are subsets of (finite) vector spaces. More practically, a matrix is an

mxn array:

. (A.1)

Of course, it is possible to think of matrices as objects in their own right. On the other

hand, it is useful to keep in mind that they act as linear functions. To see how a matrix can rep-

resent a linear function, it helps to understand what a linear function is. By definition, a linear

function, A, is a function that preserves addition and multiplication by scalars; that is:

A(ax+by) = aA(x) + bA(y)

for all scalars a and b, and vectors x and y. Linear functions include the identity operator, mul-

tiplication by a fixed scalar, and inner product with a fixed element.

Note that if V and W are vector spaces and V is finite dimensional we can always con-

struct a linear function V → W with prescribed values at the basis elements of V. Further, if

v1…vn is a basis set for the n-dimensional V and y1…yn are n arbitrary elements in W, then

there is one and only one function, A, such that A(vk)=yk. In particular, A maps an arbitrary

element, , to W by .2

2. This is actually a theorem, but we will state it without proof.

x xi()2
∑=

A

a1 1, a1 2, … a1 n,

a2 1, a2 2, … a1 n,

… … … …
am 1, am 2, … am n,

=

x xivi∑= A x() xiyi∑=

138

This says that A is completely determined by its action on the given set of basis ele-

ments from V. If W is also finite-dimensional, say m-dimensional, with basis vectors w1…wm,

then each element of W, A(vk), can be expressed uniquely as:

(A.2)

where a1k…amk are the components of A(vk) relative to the basis w1k…wmk. If we think of these

components as a column vector and collect them side by side, we reconstruct our picture of a

matrix given in Equation (A.1). An element in the ith row and jth column will generally be

written interchangeably as either Aij or aij, depending upon the context.

It is now useful to introduce the notion of matrix multiplication. If A is an mxp matrix

and B is an pxn matrix, and C is the product of A and B, denoted AB, then C is an mxn matrix

whose ijth element is:

(A.3)

AB is not defined when the number of columns of A is not equal to the number of rows

of B. Note that the product is defined in such a way that it corresponds to the composition of

the linear functions that A and B represent.

Vectors can also be thought of as matrices. A k-dimensional row vector is a 1xk matrix

while its column vector counterpart is a kx1 matrix. Equation (A.2) is therefore a particular

case of matrix-matrix multiplication.

There are many more operations that can be defined on matrices. We will define some

common ones here. Before doing that, it is worthwhile to introduce names for several matrices

with special forms. A square matrix is a matrix with the same number of rows as columns.

The zero matrix, 0, is any matrix all of whose elements are 0. Generally, its size is obvious

from context. A diagonal matrix is a matrix, D, where Dij=0 for all i≠j. The elements Dii may

take on any value, including zero. Note that 0 is a diagonal matrix. The identity matrix is the

square diagonal matrix, denoted I, where Iii=1 for all i. It is called the identity matrix because

it is the function whose output is always the same as its input. A symmetric matrix is one

A vk() aikwi
i 1=

m

∑=

Cij AikBkj
k 1=

p

∑=

§A.4 The Matrix 139

where Aij=Aji for all i,j. Note that a symmetric matrix must be square and that any square diag-

onal matrix is also symmetric.

Matrix addition, denoted A+B, results in a matrix C, such that Cij=Aij+Bij. Addition is

not defined when A and B are not of the same size. Matrix subtraction is also defined in the

obvious way. Matrix multiplication by a scalar, denoted aA, results in a matrix C such that

Cij=aAij.Note that this is equivalent to AB where B is a square diagonal matrix of the correct

size, such that Bii=a.

In general, it is possible to scale each column of a matrix A with n columns by a corre-

sponding value, c1…cn, simply by constructing a square diagonal matrix B such that Bii=ci and

computing AB. In order to scale A’s m rows by c1…cm, construct B such that Bii=ci and com-

pute BA.

The transpose of an mxn matrix, denoted AT, is the nxm matrix, C, such that Cij=Aji.

Note that the transpose of the diagonal matrix D is D; that is, DT=D. For a product of matrices,

AB, (AB)T is BTAT.

If A is a square matrix and there exists another matrix A-1 such that A-1A=AA-1=I then

A is nonsingular and A-1 is its inverse. Note that for a diagonal square matrix, D, D-1 is the

matrix such that D-1
ii=1/Dii. From this, it should be clear that not all matrices, such as 0, have

an inverse. They are called singular matrices. For a matrix, B, whose columns (or rows) are

pairwise orthonormal, B-1=BT. There is also a notion of a pseudo-inverse, that can be com-

puted for non-square matrices as well as square matrices. We will discuss this in § A.5.

Just as vectors have norms, we can define one for matrices. There are several possibil-

ities; however, we will mention only the Frobenius norm:

. (A.4)

Assuming the dot product as the inner product, this is equivalent to treating the matrix as if it

were simply a vector and computing its norm.

A F Aij()2

i j,
∑=

140

A.5 Eigenvectors and Eigenvalues

Let V be a vector space, S a subspace of V, and A a linear function (i.e. matrix) of S onto V. A

scalar, λ, is called an eigenvalue of A if there is a nonzero element x in S such that:

Ax=λx (A.5)

Further, x is considered to be the eigenvector of A corresponding to λ. There is exactly one

eigenvalue corresponding to a given eigenvector (note that this does not mean that each eigen-

vector has an eigenvalue that is different from every other eigenvector).

Eigenvalues are not necessarily real numbers; they may be complex. When all the

eigenvalues of a matrix are positive real numbers, the matrix is positive definite. When all the

eigenvalues are simply non-negative real numbers (i.e. may include zero), the matrix is posi-

tive semi-definite.

Eigenvalues and eigenvectors are useful objects; however, they are not always easily

interpretable beyond their mathematical definitions. There are some cases where they are. To

illustrate such a case, let us introduce the singular value decomposition (SVD) of a matrix.

Briefly, the SVD of a matrix, A, is:

A = USVT

where U contains orthonormal vectors, V contains orthonormal vectors and S is diagonal. All

matrices have a singular value decomposition.

Decompositions like the SVD are useful because they often allow us to represent a

matrix in some other form that makes it easier to understand and/or manipulate its structure.

Here, the special form of U, S and V make it is easy to manipulate A. For example, it is easy to

see that A-1=VS-1UT if A is a square matrix. If A is not square, this is known as the pseudo-

inverse of A, denoted A+. As another example, note that the SVD of the matrix AAT is:

AAT = USVTVSUT = US2UT, (A.6)

where U contains the eigenvectors of AAT and each diagonal element of S is the square root of

the corresponding eigenvalue. AAT has several interesting properties. In particular, it is posi-

tive semi-definite. Further, each eigenvalue represents the contribution of its eigenvector to the

§A.6 Practical Issues in Linear Algebra 141

variance of the data contained in A. This particular computation is one way to perform princi-

pal components analysis, a popular linear dimensionality reduction technique.

A.6 Practical Issues in Linear Algebra

In practice there are several algorithmic and numeric issues that arise in the practical study of

linear algebra. This is a rich and active research field, and as impossible to summarize in an

appendix as it is to summarize the theories of linear algebra. Therefore, we will only introduce

a few issues that affect this work directly in the hope that the reader gains an appreciation of

some of the computational issues that arise in designing many of the algorithms encountered

in this work.

A.6.1 Algorithmic Complexity

To begin with, let us state the complexity of several basic vector and matrix operations. For

the purposes of this discussion, n is the number of total elements in a matrix.

Assuming a normal model with elements stored in the obvious way (as a contiguous

block of memory), element access is a constant operation, O(1). Operations like addition and

subtraction take linear time, O(n). Multiplication by a scalar is also linear. Calculating the

transpose of a matrix is also linear.

Matrix-Matrix Multiplication is polynomial, roughly O(n3), assuming that the two

matrices involved are of roughly the same size3. Inversion is no harder than multiplication and

requires the same time. Numerically stable techniques for finding inverses are often preferred

to more straightforward algorithms, but techniques like SVD still take roughly O(n3) time.

Important to an understanding of computational issues in linear algebra is realizing

that such issues arise as much because of system and engineering realities as they do because

of theoretical performance bounds on algorithms. For example, there are several reasonable

algorithms that can be used to implement matrix multiplication. They are all equivalent math-

ematically; however, performance can differ greatly depending upon the underlying machine

architecture and they way in which these procedures process memory. In general matrices can

3. It is possible to lower that time to around O(nlog(7)) by cleverly storing some common subexpressions.

142

be very large objects. Therefore, it often matters a great deal whether data is stored in column

or row order, for example, and whether implemented algorithms can exploit that knowledge.

A.6.2 Exploiting Matrix Structure

Rather than delve into a detailed discussion of specific algorithms, we will discuss the general

notion of exploiting matrix structure to make certain operations not only faster, but practically

tractable. Of the many kinds of matrices that we have noted, perhaps the most relevant to this

work is the sparse matrix, so we will begin there.

Recall that sparse matrices have many zero entries. Therefore, it seems reasonable to

create a data structure that represents only the non-zero elements. A common representation—

and one used in this work—is to represent a sparse matrix as a pair, <I,D> where I contains an

ordered list of the indices of all the non-empty entries and D contains the corresponding val-

ues. If the number of non-zero elements is m and m<<n, then this representation may require

many fewer orders of magnitude than a standard representation to store. For example, the AP

collection used in this work is roughly described by a 280,000 x 280,000 matrix. This trans-

lates into roughly 292 gigabytes of storage (assuming four byte numbers). The sparse repre-

sentation requires only about 334 megabytes.

This savings does have a cost, of course. Arbitrary element access, for example, now

requires a binary search, which is O(lg k), in general. Inserting a new non-empty element also

requires a search and—depending upon the structure used—O(k) for moving/copying old ele-

ments in order to maintain sorted order. Iteration through all the elements of a matrix is still

linear, however, and many of the other operations do not change in complexity. Further, if

m<<n, the savings in cost in space and time are extremely large. For example, sparse matrix-

matrix addition will be O(m) (the lg(m) cost of insertions is not necessary because we are iter-

ating in order; this is essentially a merge operation). Matrix multiplication has similar behav-

ior. Even SVD calculations (which often depend upon matrix-vector multiplication at their

core) will benefit a great deal.

As the number of non-zeros increases, the benefit of this representation decreases

greatly. It is therefore necessary to recognize when to abandon it. For example, dense-sparse

operations should almost always yield dense objects, not sparse ones. On the other hand,

§A.6 Practical Issues in Linear Algebra 143

sparse-sparse operations should probably yield sparse objects. Therefore, to maintain a perfor-

mance edge, it is often necessary to be very careful in how operations are ordered. For exam-

ple, a series of additions like A+B+C+D where A is dense but B, C, and D are sparse should

be executed from right to left, rather than left to right. Another common case in this work

involves subtracting the mean column (or row) from a matrix and then multiplying that result

by another matrix; that is, (with appropriate abuse of notation) A(B-µ). The vector µ is dense,

so the obvious order of operations would require a dense-sparse subtraction and then a dense-

dense multiplication. In many cases, it would be far faster to perform the three operations of a

dense-sparse matrix multiplication, a dense-dense matrix-vector multiplication, and a dense-

dense matrix subtraction, as in AB-Aµ.

Sparse matrices are especially important in this work. Still, other special-purpose rep-

resentations and algorithms for matrices such as diagonal matrices and symmetric matrices

can also lead to significant improvements in speed and storage.

It is also worth mentioning that many of the useful intermediate matrices that result

from algorithms used in this work are too large to store. For example, computing a small SVD

of a very large matrix, A, is commonly performed in this work; however, the matrix itself is

well beyond the capacity of our machines. To address this problem, it is important to note that

it is often the case that A is the result of a matrix multiply, like A=BCD where B, C, and D are

relatively small (recall that an nx1 vector times a 1xn vector will result in a quadratically

larger nxn matrix). In this case, if we store only the multiplicands, B, C, and D it is still possi-

ble to calculate the SVD. This works because at the center of the method that we use for com-

puting SVD(A) is the repeated computation of AATx for various x. Computing BCDDTCTBTx

from right to left yields the same result, but each multiplication yields a relative small vector

instead of a prohibitively large matrix.

A.6.3 Parallel Algorithms

Most of the algorithms used in this work are implemented in parallel. BRAZIL, the primary

system used for our experiments, is implemented as a part of the Parallel Problems Server, a

“linear algebra server” that operates across many processors and machines (see Chapter 7 for

144

a complete discussion). When implementing linear algebra systems in parallel, a number of

issues arise. We will very briefly mention a few.

To begin with, data must be distributed across processors. The way in which this is

done has a large impact on algorithm performance. For example, imagine that we allow two

kinds of distributions: a processor “owns” either a subset of the rows of a matrix or a subset of

the columns of a matrix. If A is distributed by rows, but we want to retrieve, say, a single col-

umn, this requires the cooperation of (and thus communication overhead for) all processors.

Consider the matrix multiplication operation, AB. Depending upon the algorithm cho-

sen to compute the product, communication cost is minimized when A is distributed by rows

and B by columns. Is it worth the initial cost of redistributing the matrices before performing

the computation? Although it can require shuffling hundreds of megabytes across processors

and machines, it is often worth it to avoid the communication cost of computing a misdistrib-

uted AB (not to mention the savings in programming effort).

Note that this only hints at the added complexity of normally simple operations, like

element access. Retrieving a particular element of a matrix now requires determining which

processor “owns” an element followed by communication across processors (and possibly

machines) to retrieve the element.

As with sparse representations, one hopes that the benefit of using a parallel approach

far outweighs costs. For the large data sets explored here, this is certainly the case. Many

operations require minimum communication and so enjoy a nearly linear speed-up. Even

when a great deal of communication is needed, the practical increase in speed and in-core

memory is significant.

