
Exploiting the Potential of Diagramsin Guiding Hardware ReasoningKathi Fisler�Department of Computer ScienceLindley Hall 215Indiana UniversityBloomington, IN 47405k�sler@cs.indiana.eduAugust 26, 1997AbstractFormal methods promises designers increased assurance in and understanding of their de-signs. Assurance is gained via proof; understanding is gained via the construction of proof.Researchers have developed powerful proof techniques; they have not focused su�ciently oncreating tools to support reasoning. As a result, formal methods fails to attain its full potential.We argue that by formalizing the notations provided by diagrammatic representations, we canbuild tools that provide support for both proof and reasoning, thereby making formal methodsmore widely applicable by designers.1 IntroductionFormal methods o�er much more to computer science than just \proofs of correctness"for programs and digital circuits, however. Many of the problems in software andhardware design are due to imprecision, ambiguity, incompleteness, misunderstanding,and just plain mistakes in the statement of top-level requirements, in the description ofintermediate designs, or in the speci�cation of components and interfaces.John Rushby [16]Desire for proofs of correctness of systems spawned the research area known as \formal meth-ods". Today's systems are of su�cient complexity that testing is infeasible, both computationallyand �nancially. As an alternative, formal methods promotes mathematical analysis of a systemas a means of locating inconsistencies and other design errors. Techniques used can range fromwriting system descriptions in a formal notation to veri�cation that the designed system satis�es aparticular behavioral speci�cation. A good general introduction to formal methods appears in [16].Ideally, using formal methods increases our assurance in and understanding of our designs.Assurance results from proof, while understanding results from the process of producing the proof.Successful use of formal methods therefore requires powerful proof techniques and clear logicalnotations. The veri�cation research community has paid considerable attention to the former.�Research supported by AT&T Bell Laboratories under the PhD Fellowship program.1

Current techniques, many of which can be fully automated, handle su�ciently complex systemsthat formal methods are now being adopted (albeit slowly) in industry. In our drive to providepowerful proof methods, however, we have overlooked the latter requirement. Research has focusedon proof without paying su�cient attention to reasoning. Current tools are often criticized astoo hard to use, despite their computational power. Most designers, not having been trained aslogicians, �nd the methodologies and notations very unnatural. Industrial sites starting out withformal methods must often rely on external veri�cation professionals to help them use these toolse�ectively [12]. Tools that are not supportive of reasoning therefore fail to provide the full bene�tsof formal methods. We can augment our current methodologies to address this problem, but we�rst need to understand reasoning and its role in hardware design.Barwise and Etchemendy [3] view valid reasoning as \the exploration of a space of possibili-ties" de�ned by the given information and the desired reasoning task. Under this de�nition, themore clearly a representation system allows for the exploration of this space, the more naturallyreasoning can be conducted within this representation. They note that reasoning is a heterogeneousactivity | people use multiple representations of information while reasoning, and those represen-tations are often non-sentential forms such as diagrams. This is consistent with what occurs inhardware reasoning, in which a combination of state machines, circuit diagrams, timing diagrams,and sentential languages (such as VHDL) are often used.We believe that diagrams naturally support such exploration, and therefore have the potentialto bridge the proof-versus-reasoning gap. Diagrams are usually cast aside as informal notations, butthey can be made rigorous. Some people view diagrams as too specialized to be suitable for formalmethods; certainly, if we were to construct a tool out of only one style of diagram, this would bea legitimate concern. The key to using diagrammatic representations e�ectively is to use di�erentstyles simultaneously. Multiple representations of information interact formally in heterogeneouslogics, an introduction to which appears in Barwise and Etchemendy's paper in this volume [4].We have developed a heterogeneous hardware logic that encompasses diagrammatic and sen-tential representations. Section 2 develops a simple example to illustrate hardware reasoning withdiagrams. Section 3 de�nes our proposed logic; it supports circuit diagrams, timing diagrams, avariant of state machines, and second-order logic. Section 4 contains additional examples, intendedto illustrate how the logic supports various styles of hardware reasoning.2 Contrasting Diagrammatic and Sentential RepresentationsConsider a simple physical device: a single pulser (SP). A single pulser converts each input pulseof arbitrary but �nite duration into an output pulse of unit duration. There are many possibleimplementations of a single pulser; we propose one which generates its output pulse in the clockcycle following the fall of the input. Two views of the implementation, one diagrammatic and onesentential, can be given as follows:
i

x

y
o

SP (I; O) � 9x9y : delay(I; x)^ not(I; y) ^ and(y; x; O)delay(I; O)� 8t : O(t + 1) = I(t)not(I; O) � 8t : O(t) = 1� I(t)and(I1; I2; O) � 8t : O(t) = I1(t)� I2(t)Notice that, up to a level of abstraction that ignores the lengths of the lines in the diagram,both representations contain the same information. However, the presentation of that informationis crucial to how easily we can reason about it. For example, suppose we want to determine whether2

the output of the circuit can ever be high when the input is high. Reasoning about this on theschematic is straightforward: looking at the diagram, we see that the input value is inverted andpassed to an and gate which computes the output value. Given that a high and gate output requirestwo high inputs, it is easy to conclude that the input cannot be high when the output is to be high.We will now attempt to reason about the same question using the sentential representation.Assuming the input is high (where high corresponds to numeric value 1 and logical true), we canrewrite (either in our heads or on paper) the de�nitions to determine that both the delay predicateand the not predicate have high as their �rst argument. This in turn produces a value for thesecond argument of the not predicate, binding y to 0. We can now replace occurrences of y with 0,from which we conclude that the output of the and gate is 0. Returning to the de�nition of SP, wesee that the output of the and gate is the output of SP; again, we conclude that the input cannotbe high when the output is high.Although we arrive at the same conclusion using each representation, one could reasonablyargue that reasoning on the diagram is clearer than reasoning on the sentences. In this case, wesuggest that the qualitative di�erence lies in how each representation maintains the connectionsbetween the components of the circuit. The diagram maintains the connections explicitly; in thesentential representation, the user has to mentally connect the components via the common wirenames and concentrate on rewriting values based on those connections. The diagram frees the userfrom having to reconstruct connection information, thereby allowing the user to concentrate on thereasoning rather than the representation. This is a very small example, yet it illustrates our pointnicely: using diagrams for reasoning about circuit and value problems is advantageous.Diagrams can also play a role in the speci�cation and veri�cation of systems. Timing dia-grams are becoming a more popular notation for expressing behavioral speci�cations [17] [10],presumably because people �nd them clearer to use than formalisms such as temporal logic. Tocontrast methods, we present the behavioral speci�cation of the single pulser in three representa-tions: second-order logic, temporal logic, and timing diagrams. In each case, we want to specifythat the pulser produces an output pulse for each input pulse, it produces only one output pulsefor each input pulse, and all output pulses are of unit duration.Higher-Order Logic:spec1(i; O) = (8n;m :Pulse(i; n;m) �9k : n � k ^ k � m ^O(k) = 1 ^(8j : (n � j ^ j � m ^ O(j) = 1 � j = k))spec2(i; O) = (8k : O(k) = 1 �SinglePulse(O; k) ^(9n;m : n � k ^ k � m ^ Pulse(i; n;m)))Pulse(f; n;m) = (n < m ^ f(n� 1) = 0 ^ f(m) = 0 ^(8t : (n � t ^ t < m � f(t) = 1)))SinglePulse(O; k) = O(k) ^ :O(k � 1) ^ :O(k + 1)Temporal Logic:rising edge � :i ^
i2 (rising edge!
(:rising edge U o))3

2 (rising edge! 3o)2 (o!
(:o))2 (o!
(:o U rising edge))Timing Diagrams:
o

=1

iThe temporal logic representation uses the usual operators: next (
), henceforth(2), eventually(3), and until (U). The timing diagram notations will be explained in detail in section 3.4. Inthis timing diagram, the dashed arrow indicates that any appearance of the second event mustbe preceded by the �rst (safety). The solid arrow indicates that the edge is not only safe, butin addition, any occurrence of the �rst event must eventually be followed by the second event(liveness). The = 1 constrains the amount of time (in this case, one clock cycle) that must elapsebetween the two events.We claim that the timing diagram is the clearest of these behavioral speci�cations for purposesof human reasoning. Speci�cations need to be easily understandable since systems are often builtbased on a designer's interpretation of them. The meaning of neither sentential speci�cation isimmediately clear, despite the fact that each is written in a well-known logical notation. In fact,the average person might construct a diagrammatic depiction of the sentential speci�cations in theprocess of understanding their full meanings. As in the case of the circuit diagram example, theimportant information | here, the relationship between timing events | is made more explicitby the diagram than by the other two representations. Timing diagrams therefore seem a goodcandidate for expressing event-based behavioral speci�cations.To illustrate heterogeneous reasoning, we complete the single pulser example by proving dia-grammatically that the proposed circuit diagram satis�es the speci�cation expressed in the timingdiagram. The steps taken here, although appearing informal, are consequences of inference rulesin the logic; these rules are presented formally in section 3.6.We start by assuming the implementation shown above and an input pulse of unspeci�ed du-ration on i:
i

i
x

y
oThe circuit indicates the functional relationship between signals i, y, and x; the timing diagramfor i can be extended to re
ect these relationships; the resulting diagram appears below on theleft. Given the waveforms for y and x, the diagram can be further extended to display informationabout signal o as in the diagram on the right:

=1

i

x

y
=1=1

o

=1

i

x

y
=1=1Looking at the speci�cation, one of our goals is to relate the events on i and o. We can relate4

the rising edge on i to the rising edge on o based on an implicit edge between each pair of events onsignal x. Another implicit edge on x allows us to relate the falling edge on o and the second risingedge on i. The top diagram shows the implicit edges and the lower two diagrams the inferences onsignals i and o.
o

=1

i

x

y
=1=1

o

=1

i

x

y
=1=1

o

=1

i

x

y
=1=1Comparing the speci�cation we are trying to prove with our current derived timing diagram,we note that we are missing constraints between the rising and falling events on o. We note thateach of these events is synchronous with another event and that an edge denoting duration oneexists between the other two events. We therefore add an edge to obtain the following diagram:

o

=1

i

x

y
=1=1

=1The diagram now contains quite a bit of information, much of which has been subsumed byinference steps. We can always remove information from the timing diagram (though doing somight weaken the information content):
o

=1

iNote that this diagram di�ers from the desired diagram only in the style of the arrow relatingthe rising edge on o to the rising edge on i. Our informal de�nition of the edge types indicated thatthe solid arrow subsumes the dashed arrow; we can weaken the existing arrow to a dashed arrow,thus completing the proof.The purpose of this example was not to advocate this style of deductive hardware veri�cation;automatic veri�cation techniques are capable of handling large classes of circuits without the needfor such low level human intervention. Our intent was to demonstrate that there is a formalstructure to how we reason with diagrams and that that structure lends a certain degree of naturalclarity to the reasoning process.What remains is to formalize diagrammatic reasoning methods like the ones used above in alogic suitable for hardware design. That task is the focus of the next section. Although the focus5

of this section was on the merits of diagrammatic representations, we do not mean to suggest thattraditional, sentential representations have no role to play. Indeed, we believe that for a hardwarereasoning system to be suitably
exible, sentential as well as diagrammatic representations need tobe included. We suspect that sentential representations will be particularly crucial for mathematicalreasoning, although we save exploration of that issue for later research.3 Heterogeneous Hardware LogicOur logic supports four representations: circuit diagrams, timing diagrams, algorithmic state ma-chines (ASMs), and higher-order sentential logic. The diagrammatic portion of heterogeneoushardware logic was �rst presented in [8]. This paper rede�nes the syntax and semantics for tim-ing diagrams originally presented in [8]; in addition, the sentential portion of the logic is formallypresented for the �rst time. The circuit diagram and ASM portions of the logic are unchangedfrom [8], but are provided here for reference. We �rst de�ne a model of physical devices, which willserve as a common semantic basis for the four syntactic representations. The syntax and semanticsof each representation is presented in turn in subsections 3.2 through 3.5. A discussion of logicalconsequence and presentation of inference rules are provided in section 3.6.3.1 Physical DevicesOur model of physical hardware is de�ned in two stages. First, we capture the structural aspectsof a device along with its interface with the external environment. Later, we augment this modelso that it can express how a device behaves over time while interacting with the environment.We assume that wires in devices can carry values in f0; 1g. Ports are primitive objects providingconnection points for wires. We choose to associate voltage values with ports rather than wires;the term assignment will refer to a total function from a set of ports to the set f0; 1g.We assume that devices are composed only of wires and basic components: binary and and orgates, inverters, and unit delay elements. Speci�cally, a basic component is a tuple hI; O; F;Diwhere I and O are disjoint sets of input ports and output ports, F is a function which assignseach p 2 O a function Fp from assignments on I into f0; 1g; and D is a function from O to thenon-negative integers indicating the delay of the component. We assume that delay elements haved = 1 and all other basic components have d = 0.An abstract device is a 5-tuple D = hI; O;B;W; ci capturing the structure of a component whereI and O are disjoint sets of ports providing the external input and output interface to D, B is aset of basic components, W is a set of wires and c is a wiring function from W to sets of ports. Weassume that all ports in a device are distinct and that the sets c(w) partition the ports of D. Anyports in I [O are called interface ports; all other ports are internal.Although any abstract device corresponds to a piece of physical hardware, we are only interestedin considering those that meet certain well-formedness conditions. In de�ning those conditions, weneed to be able to talk about paths between ports within a device. Given an abstract deviceD, there is a connecting step from port pi to port pj , denoted pi ; pj , i� either pi and pj arerespectively an input and an output port to some basic component, or pi is an internal output portor input interface port, pj is an internal input port or output interface port, and fpi; pjg � c(w)for some wire w. A �nite transitive chain of connecting steps forms a connecting path, denotedp0 ;� pn; a device contains a connecting cycle if p ;� p for some port p. We call a device well-connected if treating the basic components as nodes and the wiring function as giving rise to edges6

yields a connected graph, if for each internal port p in D there exists a connecting path from p toan element of O, and if every connecting cycle in D passes through a delay element.In order to consider an abstract device in mid-computation, we need to know the values on theports of the device. A tuple hD; ii consisting of an abstract device and an assignment for its portswill be called a concrete device. We require that all assignments included as part of a concretedevice are consistent with the structure of the device. That is, given hD; ii, for all gates g in D,the value in i on the output port of g is consistent with the values in i for the input ports of gand the function associated with g. The set of all possible assignments to the delay output portsin a device forms its possible states. A concrete device is well-connected if the abstract device itcontains is well-connected.We are interested in determining when two devices exhibit the same external behavior. Thisrequires that we be able to operate our devices over time. Given a well-connected concrete deviceC = hD; ii and an assignment a to the input ports ofD, there is a unique derived assignment i0 suchthat hD; i0i is a concrete device where i0 is de�ned as follows: if p is an interface input port of D,then i0(p) = a(p), if p is an output port to a delay element with input port pin then i0(p) = i(pin),if p is an output port of some gate g then i0(p) is Fp applied to the restriction of i0 to the inputports of g, and if p is any other port i0(p) = i0(q) where q is the unique internal output port orinput interface port wired to p.1 Concrete device hD; i0i is said to follow from C given a, where i0is the derived assignment from hD; ii and a.The term assignment sequence refers to a sequence of assignments i1; i2; : : : ; ik to the interfaceinput ports of a device. Given concrete device C = hD; ii and assignment sequence hi1; i2; : : : ; iki,a run of C is a sequence r = hC0; C1; : : : ; Cki of concrete devices such that C0 = C and for each1 � j � k, Cj is the concrete device that follows from Cj�1 given ij . The output of a concretedevice hD; ii is the restriction of i to the interface output ports O of D. The output of a runr = hC0; C1; : : : ; Cki of a concrete device is a sequence hO0; O1; : : : ; Oki where each Oi is the outputof Ci. The state of devices and runs are similarly de�ned by restricting assignments to the delayoutput ports. For port p, the run-valuation of p is the restriction of these assignments to p.Concrete devices C1 = hD1; i1i and C2 = hD2; i2i are behaviorally equivalent if D1 and D2 havethe same sets of input and output interface ports and for every assignment sequence a for D1, theoutput of the run of C1 under a is the same as the output of the run of C2 under a. Abstract devicesD1 and D2 are behaviorally equivalent if for every hD1; i1i there exists an i2 such that hD1; i1i andhD2; i2i are behaviorally equivalent, and vice versa.3.2 Circuit DiagramsIn this logic, we consider circuit diagrams composed of icons representing binary and and or gates,unit delay elements, inverters, and wires. We use a set-theoretic model to capture the syntacticinformation contained in a given circuit diagram. In this model, we represent a wire line as anordered pair of the points it connects; a binary gate icon is modelled as an ordered triple hx; y; zi,indicating that the icon connects x and y on the left, in that order, from top to bottom, with z onthe right. Unary icons are similarly represented with an ordered pair.Speci�cally, a circuit sketch s is a tuple hP; I; O;W;N;D;A;Riwhere P is a set of objects calledthe connection points of s, I and O are disjoint subsets of P called the input points and outputpoints of s, W , N , and D are disjoint subsets of P � P called the wire lines, negation icons, anddelay icons, and A and R are disjoint subsets of P � P � P called the and gate icons and or gateicons. A wire w = hpa; pbi is branch-free i� w is the unique wire with pa as its �rst component;1The proof of uniqueness appears in [8]. 7

otherwise w is a branching wire. We use the term circuit sketch as opposed to circuit diagramso that we may reserve the latter term for only those diagrams which are well-formed. A formalde�nition of this term will be presented shortly.De�nition 1 Let s be a circuit sketch and D be an abstract device.1. A depiction map from s to D is an injective function � from the connection points of s intothe ports of D such that for all p 2 sP ;(a) p 2 sI ! �(p) 2 DI .(b) p 2 sO ! �(p) 2 DO.(c) If l = hpa; pbi is a wire line of s then �(pa) and �(pb) are wired together by some wirew 2 DW ; �(pa) must be an input interface port or internal output port and �(pb) mustbe an output interface port or internal input port.(d) If n = hpa; pbi is a negation icon of s then �(pa) is connected to the input port and �(pb)connected to the output port of some inverter in DG.(e) If d = hpa; pbi is a delay icon of s then �(pa) is connected to the input port and �(pb)connected to the output port of some delay element in DR.(f) If g = hpa; pb; pci is an and-gate icon of s then �(pa) and �(pb) are connected to theinput ports and �(pb) connected to the output port of some and-gate in DG.(g) If g = hpa; pb; pci is an or-gate icon of s then �(pa) and �(pb) are connected to the inputports and �(pb) connected to the output port of some or-gate in DG.2. D is a structural implementation of s if there is a surjective depiction map from s to D andthe converse of requirements 1c through 1g in the de�nition of a depiction map holds. Thisis written D j=s s.3. D is a behavioral implementation of s if D is behaviorally equivalent to some device D0 whichis a structural implementation of s. This is written D j=b s.Lemma 1 For any device D there exists a circuit sketch C that is unique up to isomorphism oncircuit sketches such that D j=s C. For any circuit sketch C there exists a device D that is uniqueup to isomorphism on devices such that D j=s C.We use this lemma to make a deferred de�nition: a circuit diagram is any circuit sketch s forwhich the device D such that D j=s s is well-connected. For the remainder of this work, we assumewe are dealing only with circuit diagrams, as opposed to circuit sketches.3.3 ASM ChartsASM charts are a variant of state machines that combine the traditional Mealy and Moore ma-chines. They have an appearance reminiscent of
ow-charts: rectangles denote states, diamondsrepresent conditional branches, and ovals represent conditional (Mealy) outputs. Moore outputsare designated by assigning a variable a value (either T or F) within a state rectangle. Each condi-tional branch diamond contains the name of a single signal to be tested and has two paths leavingit, one labeled T and one labeled F (where T and F are relative to the value of the signal tested inthe diamond). Each conditional oval contains one or more variable names to be assigned T whencontrol reaches the oval. Examples of ASM charts appear in �gure 4 (page 17) and more extensive8

discussion appears in [14]. As in the section on circuit diagrams, we will reserve the term ASMchart for what we wish to consider well-formed diagrams, using the term ASM graph for the generalcase.An ASM graph g is a tuple hS;B;O;N;R;P i where S is a set of state objects, B is a set ofconditional branch objects and O is a set of conditional output objects such that S, B, and O areall pairwise disjoint. We will refer to the union of these sets as the objects of g. N is a set of signalnames. R is a subset of S �S �P(N)�P(N) called the next state transitions of g.2 The �rst andsecond elements of these tuples are called the source state and target state, respectively. The thirdand fourth elements are called the true conditions and the false conditions, respectively. Finally, Pis a subset of S �N �U �P(N)�P(N) called the output conditions of g. The �rst two elementsare called the asserting state and asserted variable, respectively. The third element is called theassignment value and is a member fT; Fg. The last two elements are called the true conditions andthe false conditions, respectively. We will use the term external signal for those elements of N thatappear in the true or false conditions of some element of R [P but are not the asserted variablefor any output condition; non-external signals are classi�ed as internal.In order to relate ASM graphs to devices, we need to be able to talk about their computationalbehavior. A signal-value assignment for ASM graph is a function from the names N to the setfT; Fg. An external signal-value assignment is the restriction of a signal-value assignment to theexternal signals. hg; si is an executing ASM graph where g is an ASM graph and s is some state ing. The following symbol, when placed near state s in ASM graph g, denotes that hg; si is executingat time t.
tGiven executing ASM graph hg; si and a signal-value assignment i for g, a next-state transitionhts; tt; ct; cfi 2 R is satis�ed by s and i if ts = s, i(n) = T for all names in ct, and i(n) = F forall names in cf . If there is exactly one such transition satis�ed by s and i, this transition is calledthe next state of g under s and i. We say that output condition hts; n; u; ct; cfi 2 P is satis�ed bys and i if ts = s, i(v) = T for all names v in ct, and i(v) = F for all names v in cf . Let i0 be theunique signal-value assignment such that for all output conditions hts; n; u; ct; cfi satis�ed by s andi, i0(n) = u, i0(x) = i(x) if x is an external signal and i0(x) = F for all other signals x. i0 is calledthe signal update of g under s and i.3An ASM graph g is deterministic if no two next state transitions are satis�ed by the samestate s and signal-value assignment i; it is called transitionally complete if for all states s and allsignal-value assignments i there exists a next-state transition that is satis�ed by s and i. An ASMgraph that is both deterministic and transitionally complete will be called an ASM chart. Thiscorresponds to a well-formedness de�nition on ASM graphs.We have established su�cient framework to discuss when a given ASM chart describes a givenphysical device and when a given device implements the algorithm depicted in an ASM chart.Given ASM chart g and abstract device D, a state map from g to D is a function from the states Sof g to the possible states of D. Function � from the signal names of g to the ports of D is calleda signal map i� � maps each external signal in g to an input interface port of D and each internalsignal in g to an internal output port in D. � is called a complete signal map i� it is a signal mapwith every interface port (input and output) of D in its co-domain.2The notation P(N) represents the powerset of N .3We are using F as the global default value for signals, though defaults could be assigned in various other ways.9

Live EdgeSafe Edge Simultaneous EdgeCombined Edge Conflict EdgeFigure 1: Types of edges that can be drawn on timing diagrams. Safe edges require the sourceevent to occur before or simultaneously with the target event. Live edges require the target eventto occur after the source event. Combined edges are used when safe and live edges are neededbetween the same two events. Simultaneous edges require the events to happen concurrently, whilecon
ict edges do not permit the events to occur simultaneously. These notations and de�nitionsare taken from the work of Schl�or and Damm[17]. In order to draw simultaneous edges, it is oftennecessary to cross events that should not be synchronized. In the event that a synchronization lineapplies to only some of the events it crosses, those events it relates will be attached to the lineusing a dark circle.We will establish relationships between ASM graphs and devices by simulating each on thesame inputs and seeing how closely the state transitions and output behaviors correspond. Doingthis requires that we know when a signal-value assignment and a port assignment are re
ecting thesame values. Given a signal map � and signal-value assignment i, assignment a for D is compatiblewith � and i i� a(p) = i(��1(p)) for all ports p in the co-domain of �. A state map �s and a signalmap �n are said to be feasible for g and D if for all signal-value assignments i for g and all states sin g there exists an assignment a for D which is compatible with �n and i and re
ects state �s(s)such that:1. If s0 is the next state of g under s and i, then �s(s0) is the next state of D under �s(s) anda.2. If i0 is the signal update of g under s and i, then assignment a0 derived from hD; ai iscompatible with i0.If �s and �n are feasible for g and D and the converse of requirement 1 holds for all i and s, wesay that �s and �n capture g and D.As in the section on circuit diagrams, we now de�ne three relationships between ASM graphsand devices that capture the various granularities of relationships between them.De�nition 2 1. g describes D if there exists a state map and a signal map that are feasible forg and D.2. D is a structural implementation of g i� there exists a surjective state map and a completesignal map that capture g and D. This is written D j=s g.3. D is a behavioral implementation of g if D is behaviorally equivalent to some device D0 whichis a structural implementation of g. This is written D j=b g.3.4 Timing DiagramsThe timing diagram syntax and semantics originally presented in [8] is too restricted to be able torepresent general timing relationships. We have updated our syntax and semantics to follow themuch more
exible system of Schl�or and Damm [17]. A timing diagram is a collection of individualwaveforms whose events are related by a series of edges between them. The types and notations10

for edges are given in �gure 1 and include notations for safety requirements, liveness requirements,and coincidence requirements. A timing level is an element of the set fhigh, low, don't-care, rising,fallingg. We de�ne a timing pattern as a pair hs; ci where s is a sequence of timing levels and c isa color used to indicate the role of the signal in the system as one of input, output, or internal. Atiming pattern is well-formed if high is never immediately followed by low or rising, low is neverimmediately followed by high or falling, rising is never immediately followed by rising or falling,and falling is never immediately followed by rising or falling. A timing event is de�ned as a tuplehp; ii where p is a timing pattern and i is an index into ps such that i is no larger than the lengthof ps. We will write p(i) to refer to the timing level in ps at time i.Given a collection C of timing patterns, an edge on those patterns is a pair of the form he1; e2iwhere e1 and e2 are timing events on patterns in C. An edge may be annotated with a durationmarker consisting of a positive integer or integer variable and one of the symbols +;�;=; thesemarkers specify bounds on the amount of time that may pass between the two events. A partialfunction mapping edges to duration markers is a duration mapping. We consider a timing diagramto be a tuple hN;P;ES; EL; EM ; EC; �i in which N is a set of names, P is a function from N totiming patterns, ES is a set of safe edges, EL is a set of live edges, EM is a set of simultaneousedges, EC is a set of con
ict edges, and � is a duration mapping on ES [EL.In comparing devices and timing diagrams, a timing value vt and a numeric device value vd aresaid to correspond if vt is high and vd = 1 or if vt is low and vd = 0. If vt is don't-care, then itcorresponds to any value of vd. We relate the signal names in a timing diagram T to the portsof a device D using an injective function called a waveform map in which input signals in T mapto input interface ports of D, output signals in T map output interface ports of D, and internalsignals in T map to internal output ports of D. The de�ning indices of a timing pattern are thosethat map to values in fhigh, low, don't-careg.Given a run R = hD; a0i; hD; a1i; : : : ; hD; ani of a concrete device, a timing event hp; ii, and aport s in D, hp; ii matches s in Cj i� if i is a de�ning index of p then p(i) corresponds to aj(s), ifp(i) = rising then aj(s) = 0 and aj+1(s) = 1, and if p(i) = falling then aj(s) = 1 and aj+1(s) = 0.A timing diagram T is valid for R under waveform map � between T and D i�1. For every signal s 2 T , there exists a monotonic function f from the indices of s to f0; : : : ; ngsuch that for all de�ning indices i, the value of �(s) in Rf(i) corresponds to s(i).42. For every hhs1; i1i; hs2; i2ii 2 ES and for all j, 0 � j � n, if hs2; i2i matches �(s2) in Rj, thenthere must exist k, 0 � k � j, such that hs1; i1i matches �(s1) in Rk.3. For every hhs1; i1i; hs2; i2ii 2 EL and for all j, 0 � j � n, if hs1; i1i matches �(s1) in Rj, thenthere must exist k, j � k � n, such that hs2; i2i matches �(s2) in Rk.4. For every hhs1; i1i; hs2; i2ii 2 EM , if hs1; i1i matches �(s1) in Rj , then hs2; i2i matches �(s2)in Rj.5. For every hhs1; i1i; hs2; i2ii 2 EC , if hs1; i1i matches �(s1) in Rj, then hs2; i2i does not match�(s2) in Rj .De�nition 3 Let T be a timing diagram and let D be a device.1. T describes D, written D j= T , if there is a waveform map � from T to D such that for allruns R of D, T is valid for R under �.4This function f is not necessarily unique. 11

2. D is a structural implementation of T if T describes D using a surjective waveform map.This is written D j=s T .3. D is a behavioral implementation of T if D is behaviorally equivalent to some device D0 whichis a structural implementation of T . This is written D j=b T .3.5 Sentential LogicOur sentential logic is second-order logic augmented with arithmetic operations. We assume theexistence of a sort N of natural numbers and a sort B of booleans with boolean constants f and t.We also assume we have temporal variables t1; t2; : : :, temporal constants 0; 1; : : : for each numberk in N , and function constants f for every function from N to N . Given a concrete device C andan assignment sequence A, we associate with each port p in C a port function constant p from Nto B; for each i up to the length of A, p(i) returns the value on p in device Ci in the run of Con A, and for all other i, p(i) returns f. Port value 0 is equivalent to boolean constant f and portvalue 1 is equivalent to boolean constant t. We will assume the existence of port function variablesW;X; Y .The class of temporal terms is the smallest class containing the temporal variables and constantsand closed under the following operation: if t is a temporal term and f is a function from N to N ,then f(t) is a temporal term. Given a function � mapping temporal variables into N , we extend �to a function mapping all temporal terms t into N in the obvious way by recursion on terms:�(k) = k�(f(t)) = f(�(t))We also have a set L of value terms, de�ned as the smallest set containing t, f, F (t) for eachtemporal term t and F 2 N ! B, X(t) for each temporal term t and port function variable X ,and closed under the following: if l1; l2 2 L, then :l1 and (l1 ^ l2) are in L. We assume that _ isde�ned as usual from : and ^.Given any function � from temporal variables into N and port function variables into N ! B,and any value term l, we de�ne l[�] to be the boolean value that l takes on under the mapping �.This is de�ned by recursion as follows:t[�] = truef [�] = falseF (t)[�] = F (�(t))X(t)[�] = �(X)(�(t))(:l)[�] = :(l[�])(l1 ^ l2)[�] =(l1[�] ^ l2[�])The atomic formulae are the set of expressions of the form t1 � t2, t1 = t2 for temporal termst1 and t2, and l1 = l2 for value terms l1 and l2. The set of formulae of our language is the smallestset containing the atomic formulae and closed under the following: if B1 and B2 are formulae, thenso are :B1, (B1 ^ B2), 8XB1, and 8tB1; _ and 9 are assumed to be de�ned as usual from theseconnectives.We de�ne the semantics of formulae in terms of concrete devices and assignments to variables, asone would expect. For any formula E, we de�ne C;A j= E[�] recursively on E, where C = hD; ii is aconcrete device and A is an assignment sequence of length k for D. � maps temporal variables intotemporal constants 0 : : :k and port function variables into port function constants. The notationB1[X=p] denotes the substitution of p for X in B1; B1[t=ti] is de�ned analogously.12

C;A 6j= f [�]C;A j= t[�]C;A j= (t1 = t2)[�] i� �(t1) = �(t2)C;A j= (t1 � t2)[�] i� �(t1) � �(t2)C;A j= (l1 = l2)[�] i� �(l1) = �(l2)C;A j= :B1[�] i� C;A 6j= B1[�]C;A j= (B1 ^ B2)[�] i� C;A j= B1[�] and C;A j= B2[�]C;A j= (8XB1)[�] i� C;A j= (B1[X=p])[�]for each port function constant associated with a port in CC;A j= (8tB1)[�] i� C;A j= (B1[t=tc])[�]for each temporal constant tc 2 0 : : : kDe�nition 4 Let C = hD; ii be a concrete device and E be a formula in our sentential language.E describes C, written C j= E, if for all assignment sequences A for D, there exists a function� mapping port function variables into port function constants for C and temporal variables intotemporal constants 0 : : :k, where k is the length of A, such that C;A j= E[�]. We say that Edescribes D, written D j= E if for all assignments i, hD; ii j= E.3.6 Rules of Inference and Methods of ProofAlthough a general discussion of the theory of heterogeneous inference is out of the scope of thispaper, our presentation is motivated by the work of Barwise and Etchemendy [1]. When statingthese rules, we use the term representation as opposed to the more traditional term formula toavoid the sentential connotations associated with the latter. In general, a rule can be formulatedto infer representation G from a set of representations S if it is the case that whenever a deviceD models every element of S, D also models G; in this case G is said to be a logical consequenceof S. While this requirement does not dictate which of the modeling relationships (structural orbehavioral) should be used in de�ning rules of inference, we use behavioral modeling to create rulesbetween diagrams of the same type and structural modeling to create rules between diagrams ofdi�erent types.There are a number of inference rules for the full logic; only a subset are relevant to the examplespresented in this paper. Rules are presented with their diagrammatic depictions where feasible.We do not present the standard inference rules of higher-order logic or the rules of arithmetic, butassume they are de�ned within the system.We start by de�ning some general methods of proof. In these de�nitions, we consider a proofto be a sequence of representations such that each element of the sequence is either a single rep-resentation or another proof; each proof appearing as a complete element of a proof P is a directsubproof of P . Each proof starts with a series of representations called the initial assumptions ofthe proof. The context for an element of a proof is the set of elements that have preceded it in theproof. We will consider a proof to be valid if every element that is not an initial assumption is thelogical consequence of its context. A goal is a representation that we wish to prove from the set ofinitial assumptions. The goal is satis�ed if it is the last representation in a valid proof.In the course of producing a proof, it is often the case that there are many possible cases thatneed to be considered in order to complete the next proof step; a simple example of this fromsentential logic arises when working with disjunctions. In this case, it is common to consider eachpossibility in turn and then to prove that the desired goal is satis�ed in each case. The followingrule generalizes this notion of breaking into a set of cases:13

Rule 1 (Condition Exhaustive) Let C1; : : : ; Cn be a set of direct subproofs of a proof P , let Rbe some representation, and let A be some property that can be associated with R. C1; : : : ; Cn areexhaustive with respect to A i� every context in which R has property A is subsumed by some Ci.As an example of how this rule can be instantiated for a particular property, we de�ne a rulefor breaking into cases based on the states of an ASM chart that assert a particular variable.Rule 2 (Asserting States Exhaustive) Let A be an ASM chart, let v be any signal in A, andlet u be a truth value. Let S be the set of all states s such that hs; v; u; ct; cfi is an output conditionin A. Direct subproofs C1; : : : ; Cn are Asserting States Exhaustive if each element of S is the stateof A in the initial assumptions of some Ci.Usually, our goal in splitting into cases is to derive some particular representation from eachcase so that the representation may be extracted from the cases and asserted at the level containingthe subproofs. We express this in our logic using the following rule:Rule 3 (Merge) Let P be a proof containing an exhaustive set of cases C1; : : : ; Cn and let R bea representation that is satis�ed in every Ci, 1 � i � n. R is true in P by the Merge rule.We now turn to rules that are particular to the di�erent types of representations. We beginwith four rules related to ASM charts.Rule 4 (Asserting State) Let A be an ASM chart, let v be any signal in A, and let u be a truthvalue such that there exists a unique state s 2 A that can be the asserting state for v with valueu in the current context. If t is a time variable such that v(t) = u, then it follows by the rule ofAsserting State that hA; si is executing at time t.Rule 5 (Value in State) Let hA; si be executing at time t. Given output condition hs; n; u; ct; cfi,if every element of ct is true in the current context and every element of cf is false in the currentcontext, then n(t) = u follows by Value in State.Rule 6 (State Transition) Let hA; si be executing at time t. Given next state transition hs; s0; ct; cfi,if every element of ct is true in the current context and every element of cf is false in the currentcontext, then hA; s0i is executing at time t+ 1 by the rule of State Transition.Rule 7 (Looping) Let hA; si be executing at time t with a next-state transition hs; s; ct; cfi suchthat there is exactly one signal in ct [cf . Let v name this signal.1. If v 2 ct, 9t1 t1 > t ^ :v(t1) is true in the current context, and t1 is the smallest suchtime, then hA; s0i is executing at time t1 + 1 under the looping rule, where hs; s0; fg; fvgi is anext-state transition in A.2. If v 2 cf , 9t1 t1 > t^v(t1) is true in the current context, and t1 is the smallest such time, thenhA; s0i is executing at time t1 + 1 under the looping rule, where hs; s0; fvg; fgi is a next-statetransition in A.We now present some rules associated with circuit diagrams. It is straightforward to de�ne therules of boolean algebra in terms of their associated circuit diagram representations; as a result,we give only one example of such a rule here, although the full set of boolean algebra rules arede�ned within the logic. We de�ne one instance of the distributive law below; its diagrammaticrepresentation appears in �gure 2. 14

A

C

B

A
C

B

D

DFigure 2: Inference rule corresponding to distributivity.Figure 3: The simulation rules on circuit diagrams; high voltages are denoted in black and lowvoltages are denoted in grey. Thin wires are considered to have unknown/don't-care voltage.Other rules on and gates, such as those involving low voltages, can be derived from the existingand rules. Rules for or gates can be derived from both the and rules and the inverter rules.Rule 8 (Distributivity) Given circuit diagram C with a branch-free wire w connecting the outputof an or gate r to the input of an and gate a, circuit diagram C0 is derived by means of distributivityby adding new and gates a1 and a2, adding new or gate r1, wiring the output of r1 to the outputof a, wiring the non-w input to a to an input port of each of a1 and a2, wiring one input of r tothe unused input port on a1 and the other input of r to the unused input port on a2, wiring theoutputs of a1 and a2 to the input of r1, and removing a, w, and r.In addition to the boolean algebra rules, we de�ne what can be thought of as simulation ruleson circuit diagrams | rules that allow us to infer the propagation of voltage levels on wires acrossgates. These rules should be intuitively clear. A collection of these rules appears in �gure 3; theformal de�nition of the �rst rule can be given as:Rule 9 (And High Output) Let a be an and gate whose output voltage is known to be high. Itfollows that the voltage on either input must also be high.We use a variety of timing diagram inference rules in this paper: some between timing diagramsand other timing diagrams, some between timing diagrams and circuit diagrams, and some betweentiming diagrams and sentential logic. The �rst two types of rules were used in the single pulserdiscussion in section 2. The rules are now presented formally; the reader is referred back to thesingle pulser discussion for examples of using the rules.Rule 10 (Edge Transitivity) Let T be a timing diagram with edges he1; e2i and he2; e3i of thesame type. Unless he1; e2i and he2; e3i are con
ict edges, timing diagram T 0 is derived from T bymeans of edge transitivity by adding new edge he1; e3i of the same type as he1; e2i and he2; e3i.Rule 11 (Weakening) Let T be a timing diagram. Timing diagram T 0 is derived from T bymeans of weakening by either removing an edge from ES , EL, EM , or EC , or by removing a timingpattern p from the range of P and removing all edges from ES , EL, EM , and EC containing anevent on p. 15

Rule 12 (Time Equality) Let T be a timing diagram with edges he1; e2i; he3; e4i 2 EM and edgehe1; e3i of any type. Timing diagram T 0 is derived by means of time equality by adding edge he2; e4iof the same type as he1; e3i. If he1; e3i 2 ES [EL, then �(he2; e4i) = �(he1; e3i).The next de�nition gives an example of how we infer additional timing diagram informationfrom a timing diagram and a circuit diagram. In this de�nition, we de�ne the
ip s0 of a sequences of timing levels such that s0(i) = high if s(i) = low, s0(i) = low if s(i) = high, s0(i) = rising ifs(i) = falling, and s0(i) = falling if s(i) = rising.Rule 13 (Waveform Negation) Let T be a timing diagram, let C be a circuit diagram, and letD be a device such that D j= T and D j=s C. Let hpa; pbi be an inverter in C such that T containsa timing pattern p = hs; ci for the signal name corresponding to pa. Timing diagram T 0 follows bymeans of waveform negation by adding a new timing pattern p0 = hs0; c0i such that s0 is the
ip ofs and c0 is the color associated with the function of pb in C, and for each i up to the length of s,hhp; ii; hp0; iii 2 EM .In the next section, we will use rules between timing diagrams and sentential logic. Unlike mostof the other rules in the system, these are essentially translation rules. One example is the rulethat produces a live edge from a sentential formula:8t (:A(t)^A(t+1)!9t0 t0�t^:B(t0)^B(t0+1))
A

B4 The Island Tra�c Light ControllerWe are now ready to demonstrate the
exibility of the logic on an example. Assume that we wantto design a controller for the tra�c lights at a one lane tunnel connecting the mainland to a smallisland as pictured below. There is a tra�c light at each end of the tunnel; there are also foursensors for detecting the presence of vehicles: one at tunnel entrance on the island side (IE), oneat tunnel exit on the island side (IX), one at tunnel entrance on the mainland side (ME), and oneat tunnel exit on the mainland side (MX).
MG
MR

IR
IG

Tunnel

ME

MX

IX

IEIn addition, there is a constraint that at most sixteen cars may be on the island at any time. Wemake the environmental assumptions that all cars are �nite in length, that no car gets stuck in thetunnel, that cars do not exit the tunnel before entering the tunnel, and that cars do not leave thetunnel entrance without traveling through the tunnel.The solution discussed here consists of three communicating controllers: one for the island lights,one for the mainland lights, and one tunnel controller that processes the requests for access issued16

T

T

TT

T

TT

F
F

F

F

F
F

FIE

IY

IE

IE

IG IX

IX

IR

TC

IRL = T

IRL = T

IU = T
IGL = T

IU = T
IGL = T

TC IC-+ -

Green Red

Entering Exiting

T

T

T

T

T

TT
F

F

F

F

F
F

F

ME

MY

ME

ME

MG MX

MX

MR

TC

MRL = T

MRL = T

MU = T
MGL = T

MU = T
MGL = T

TC IC++

-

Green Red

Entering

Exiting

F

T
IC < 16

IR

MR

Dispatch

MU

MU

IU

IU

MG

IG

MY=T

IY=T

TC = 0

IC < 16

TC = 0

TC = 0

TC = 0

M-Use

I-Use

M-Clear

I-Clear

T

F
F

F

F

F

F

F

F

F

F

F

T

T

T

T

T

T

T

T
T T

Figure 4: ASM charts for the Island Tra�c Light Controller; the island light controller is on thetop left, mainland light controller on the top right, and tunnel controller on the bottom. IGL andIRL are the green and red lights for the island, IU indicates that the island is using the tunnel, IRindicates that the island is requesting the tunnel, IY indicates that the island is being instructedto release control of the tunnel, and IG indicates that the island has been granted control of thetunnel; a similar set of signals has been de�ned for the mainland. TC is a count of the number ofcars presently inside the tunnel and IC is a count of the number of cars presently on the island.17

8t9t1 t1 > t ^ :IE(t1) ^ 8t2 t1 > t2 � t! IE(t2)8t9t1 t1 > t ^ IE(t1) ^ 8t2 t1 > t2 � t! :IE(t2)
IE

MX

ME

IX

ME

MGL

IE

IGLFigure 5: Representations of the environmental assumptions.by the other two controllers. State machines depicting each of the three controllers are provided in�gure 4. We would like to establish that our solution has at least the following properties:1. Cars never travel both directions in the tunnel at the same time.2. Access to the tunnel is not granted until the tunnel is empty.3. Lights don't turn green until access is granted.4. The tunnel is used once granted.5. Requests for the tunnel are eventually granted.6. Once a car arrives at an entrance, the light at that entrance eventually turns green.7. All commands to yield the tunnel are acknowledged by the island and mainland controllers.8. There are never more than 16 cars on the island.9. Counters are only changed once per car.10. Counters do not move if increment and decrement signals are asserted simultaneously.Some of these properties, such as 2 { 7, are natural candidates for �nite-state veri�cationtechniques, others, such as 10, are easier to reason about once an implementation of the systemis designed; we will demonstrate how our logic supports reasoning at each of these levels. As anexample of veri�cation at the state-machine level, consider the condition that all yields issued bythe tunnel controller should eventually be acknowledged; many of the other conditions above couldalso be veri�ed in a similar manner. Assuming the island controller is being asked to yield, thiscan be expressed using timing diagram
IY

IUWe now provide a proof, using the inference rules presented in section 3.6, that this timing dia-gram is a logical consequence of the three controller diagrams and the environmental assumptions.Formally, we represent the environmental assumptions as shown in �gure 5. The proof is givenin natural deduction style. Ideally we would develop this proof in an animated system (akin toHyperproof) that updated each representation with the information from the current context as theproof progressed; lacking animation in this presentation, we provide the diagrams corresponding toeach step explicitly. To keep the proof compact, rather that insert the state machine diagrams into18

the lines of the proof, we insert a grey icon indicating that the formula at a given step is a diagram;the diagrams corresponding to each step are numbered and are provided following the proof. Weuse a black rectangular icon to stand for the goal diagram on the appropriate lines.1. Environmental Assumptions Given (�gure 5)2. Tunnel and Island ASMs Given (�gure 4)3. IY (t) Given4. (1) Asserting State; 35. :IU(t) Assume6. Modus Ponens, 9 Intro; 3, 57. IU(t) Assume8. (2) Assume9. (3) State Transition; 3, 810. :IU(t+ 1) Value in State; 911. Modus Ponens, 9 Intro; 3, 1012. (4) Assume13. 9t1 t1 > t ^ :IE(t1)^ Instantiate Given8t2 t1 > t2 � t! IE(t2)14. 8t2 t1 � t2 � t! IU(t2) State Trans/Val in State; 1215. 8t0 t � t0 � t1 (5) State Transition; 4, 1416. (6) Looping; 12, 1317. IU(t1 + 1) Value in State; 1618. (7) State Transition; 14, 1519. IY (t1 + 1) Value in State; 1820. (8) State Transition; 16,1921. :IU(t1 + 2) Value in State; 2022. Mod Ponens, 9 Intro; 3, 17, 2123. Assert States Exhaust; 8, 1224. Excluded Middle; 5, 7
(1) IR

MR

Dispatch

MU

MU

IU

IU

MG

IG

MY=T

IY=T

TC = 0

IC < 16

TC = 0

TC = 0

TC = 0

M-Use

I-Use

M-Clear

I-Clear

T

F
F

F

F

F

F

F

F

F

F

F

T

T

T

T

T

T

T

T
T T

t (2) T

T

TT

T

TT

F
F

F

F

F
F

FIE

IY

IE

IE

IG IX

IX

IR

TC

IRL = T

IRL = T

IU = T
IGL = T

IU = T
IGL = T

TC IC-+ -

Green Red

Entering Exiting

t

19

(3) T

T

TT

T

TT

F
F

F

F

F
F

FIE

IY

IE

IE

IG IX

IX

IR

TC

IRL = T

IRL = T

IU = T
IGL = T

IU = T
IGL = T

TC IC-+ -

Green Red

Entering Exiting

t+1

(4) T

T

TT

T

TT

F
F

F

F

F
F

FIE

IY

IE

IE

IG IX

IX

IR

TC

IRL = T

IRL = T

IU = T
IGL = T

IU = T
IGL = T

TC IC-+ -

Green Red

Entering Exiting
t

(5) IR

MR

Dispatch

MU

MU

IU

IU

MG

IG

MY=T

IY=T

TC = 0

IC < 16

TC = 0

TC = 0

TC = 0

M-Use

I-Use

M-Clear

I-Clear

T

F
F

F

F

F

F

F

F

F

F

F

T

T

T

T

T

T

T

T
T T

t’ (6) T

T

TT

T

TT

F
F

F

F

F
F

FIE

IY

IE

IE

IG IX

IX

IR

TC

IRL = T

IRL = T

IU = T
IGL = T

IU = T
IGL = T

TC IC-+ -

Green Red

Entering Exiting

t1+1

(7) IR

MR

Dispatch

MU

MU

IU

IU

MG

IG

MY=T

IY=T

TC = 0

IC < 16

TC = 0

TC = 0

TC = 0

M-Use

I-Use

M-Clear

I-Clear

T

F
F

F

F

F

F

F

F

F

F

F

T

T

T

T

T

T

T

T
T T

t1+1 (8) T

T

TT

T

TT

F
F

F

F

F
F

FIE

IY

IE

IE

IG IX

IX

IR

TC

IRL = T

IRL = T

IU = T
IGL = T

IU = T
IGL = T

TC IC-+ -

Green Red

Entering Exiting

t1+2

Assuming we are satis�ed with the state-level design, the next step becomes designing animplementation of the system. This too can be done using the inference rules of the logic. Thereare several algorithms for converting a state machine into physical hardware [14]; for this examplewe will take a state-encoded approach to the design. The circuit diagrams provided in �gure 6 for20

IY

IE

IG

IX

IGL

IRL

IR

TC -

TC+/IC -

IY
IE

IG

IX

IGL

IRL

IR

TC -

TC+/ IC -Figure 6: Circuit diagrams for the island light controller. The top diagram is na�ively producedusing a state-encoding of green=00, entering=01, exiting=10, and red=11. The simpli�ed yetbehaviorally equivalent bottom diagram is derived from the �rst using the boolean algebra basedcircuit diagram inference rules .
21

the island light controller can be shown to be logical consequences of the associated state machinein �gure 4. Although the logic includes a rule for inferring implementations from ASM charts, thatrule is not presented here.The diagrams in �gure 6 suggest how the logic can be used for design. Assuming we derive thetop diagram under an inference rule for state-encoded implementations of state machines, thereare a number of optimizations we could make to minimize the number of gates in the circuit. Thebottom diagram re
ects one possible minimized circuit obtained from the original by means of theboolean algebra based circuit diagram inference rules. The soundness of these rules, established butnot proven here, is su�cient to assure us that the two circuits are behaviorally equivalent. We arein the process of proving a completeness result based on a canonical form for circuit diagrams [7];this would enable us to transform any two behaviorally equivalent circuit diagrams into one anotherusing the inference rules.Given implementations of the three controllers, all that remains is to design the componentsnecessary to interface the three implementations. While some of the interface consists only ofwires, additional logic is required to integrate the counters and the needed comparator into the�nal design. This brings us back to the issue of veri�cation, as we would like to formally establishthe correctness of the interface logic.As an example, consider the logic required to interface to the counter TC that records how manycars are currently in the tunnel. Assume we have chosen to use a LS191 up-down counter [13] inour implementation. This counter has an enable signal and a single signal for indicating whetherthe counter should count up or count down. When the enable signal is low, a low voltage on theup/down line causes counting upwards and a high voltage on the up/down line causes countingdownwards; no counting occurs when the enable line voltage is high. Once we interface the controllerimplementations with the counter, we must verify that our interface logic routes signals properlyto the LS191. Assume that we used the following interface logic, where I-TCIncr is the signal TC+from the island light controller and the remaining signals are analogously de�ned.
I-TCIncr
M-TCIncr

I-TCDecr
M-TCDecr

Enable

Down/UpWe can use the simulation style inference rules on circuit diagrams to verify that our interfacelogic behaves as desired. As an example proof, consider the case when the island controller issues atunnel counter increment and the mainland controller issues a tunnel counter decrement.5 In thiscase the counter should hold its current value. The following proof consists of two diagrams. Inthe �rst, we assume that both I-TCIncr and M-TCDecr are asserted simultaneously. The seconddiagram shows the resulting asserted signals once the simulation rules are applied to the �rstdiagram.5This combination is possible in our proposed state machines.
22

I-TCIncr
M-TCIncr

I-TCDecr
M-TCDecr

Enable

Down/Up

I-TCIncr
M-TCIncr

I-TCDecr
M-TCDecr

Enable

Down/Up5 ConclusionsDiagrams are a powerful | and underutilized | notation. They are good representations forhardware reasoning because they are specialized to particular properties of systems. Combiningspecialized representations within a heterogeneous logic provides a powerful paradigm for support-ing reasoning in addition to proof. A heterogeneous hardware logic that includes diagrams thereforesuggests a possible solution to the usability problem in formal methods.Our heterogeneous logic approach has been criticized as being unnecessarily complex [15]; tra-ditional, sentential logics are argued to be simpler and more
exible because they can model manyproperties using a single notation [9]. Such generality comes at a cost with respect to naturalreasoning. We feel that complexity in the underlying system is a suitable tradeo� for greaterusability.Other researchers have explored formal usage of diagrams in limited situations in hardware rea-soning. Timing diagrams have received the most attention, being cited as a more natural formalismfor use in place of temporal logic [17] [10]. Other systems have employed more general usage ofdiagrammatic representations [5] [18] [6]. All of these systems formalize diagrams by translatingthem into known sentential logics; proofs in these systems are carried out in the sentential logic,with the diagrams serving as interface tools.The translation approach is reasonable when using a single diagrammatic notation. In order touse this approach to de�ne inference rules in our heterogeneous framework, we would have to eithertranslate all of the representations into a common sentential logic or establish formal connectionsbetween multiple existing sentential logics. Rather than risk adding logical errors via the translationprocess, we de�ne our rules directly on the diagrams.There are additional advantages to our approach. Diagrams often encode substantial amountsof detailed information that may or may not be relevant to a veri�cation e�ort. Translation,unable to �lter what information to capture and what to ignore, might produce a considerablylarger speci�cation than is actually necessary. Our approach is also highly modular; adding a newrepresentation does not involve integration of additional underlying logics.Additional research is required before we can construct a tool based upon our logic. We need toextend it with support for making abstractions [11] and with better support for automatic veri�ca-tion methods. Automatic methods are required for handling large examples. One might questionwhy, if we intend to automate the logic, we are concerned with how well the logic supports humanreasoning. Automatic methods cannot fully handle many industrial size examples due to complex-ity bounds. Human reasoning is often needed in order to decompose a problem into pieces that aresu�ciently small for automatic methods. In addition, the decidable logics underlying automaticmethods are necessarily limited in expressibility; human reasoning is required for problems fallingoutside of these limitations. Addressing these two issues would yield a prototype system geared23

towards proof and reasoning that will help bring formal methods closer to designers.AcknowledgementsThe author thanks Jon Barwise, Shriram Krishnamurthi, Steve Johnson, Gerry Allwein, and severalanonymous reviewers for useful discussions and comments on this project.References[1] Jon Barwise and John Etchemendy. Information, Infons, and Inference. In Robin Cooper,Kuniaki Mukai, and John Perry, editors. Situation Theory and Its Applications. Stanford Uni-versity Press, 1990.[2] Jon Barwise and John Etchemendy. Hyperproof. CSLI Lecture Notes, University of ChicagoPress, 1994.[3] Jon Barwise and John Etchemendy. Logic, Proof, and Reasoning. In Alan Makinowski, editor,Companion to Logic. Blackwell, to appear.[4] Jon Barwise and John Etchemendy. Visual Information and Valid Reasoning. This volume.[5] L.K. Dillon, G. Kutty, L.E. Moser, P.M. Melliar-Smith, and Y.S. Ramakrishna. A GraphicalInterval Logic for Specifying Concurrent Systems. Technical Report, UCSB, 1993.[6] Simon Finn, Michael P. Fourman, Michael Francis, and Robert Harris. Formal System Design| Interactive Synthesis on Computer-Assisted Formal Reasoning. In Luc Claesen, editor,Formal VLSI Speci�cation and Synthesis: VLSI Design-Methods-I. North-Holland, 1990.[7] Kathi Fisler. A Canonical Form for Circuit Diagrams. Indiana University Department of Com-puter Science Technical Report TR432, May 1995.[8] Kathi Fisler. A Logical Formalization of Hardware Design Diagrams. Indiana University De-partment of Computer Science Technical Report TR416, September 1994.[9] M.J.C. Gordon. Why higher order logic is a good formalism for specifying and verifying hard-ware. In G.J. Milne and P.A. Subrahmanyam, editors. Formal Aspects of VLSI Design: Pro-ceedings of the 1985 Edinburgh Conference on VLSI. North Holland, 1986.[10] K. Khordoc, M. Dufresne, E. Cerny, P. Babkine, and A. Silburt. Integrating Behavior and Tim-ing in Executable Speci�cations. In Proceedings, Computer Hardware Description Languagesand their Applications, pp. 385{402, April 1993.[11] Thomas Frederick Melham. Formalizing Abstraction Mechanisms for Hardware Veri�cation inHigher Order Logic. University of Cambridge Computer Laboratory, Technical Report 201,August 1990.[12] NASA Langley Formal Methods Workshop. Panel Sessions and Discussions. May, 1995.[13] National Semiconductor Corporation. LS/S/TTL Logic Databook, 1987.[14] Franklin P. Prosser and David E. Winkel. The Art of Digital Design, 2nd edition. Prentice-Hall,1987. 24

[15] Reviewers' Comments on papers submitted to Theorem Provers and Circuit Design 1994 andComputer Hardware Description Languages and Their Applications, 1995.[16] John Rushby. Formal Methods and Digital Systems Validation for Airborne Systems. NASALangley Contractor Report 4551, December 1993.[17] Rainer Schl�or and Werner Damm. Speci�cation and Veri�cation of System-Level HardwareDesigns using Timing Diagrams. In Proceedings of the European Conference on Design andAutomation. February 1993.[18] Mandayam Srivas and Mark Bickford. SPECTOOL: A Computer-Aided Veri�cation Tool forHardware Designs, Vol I. Rome Laboratory Technical Report RL-TR-91-339, Gri�ss Air ForceBase, NY, December 1991.

25

