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Abstract

Formal methods promises designers increased assurance in and understanding of their de-
signs. Assurance is gained via proof; understanding is gained via the construction of proof.
Researchers have developed powerful proof techniques; they have not focused sufficiently on
creating tools to support reasoning. As a result, formal methods fails to attain its full potential.
We argue that by formalizing the notations provided by diagrammatic representations, we can
build tools that provide support for both proof and reasoning, thereby making formal methods
more widely applicable by designers.

1 Introduction

Formal methods offer much more to computer science than just “proofs of correctness”
for programs and digital circuits, however. Many of the problems in software and
hardware design are due to imprecision, ambiguity, incompleteness, misunderstanding,
and just plain mistakes in the statement of top-level requirements, in the description of
intermediate designs, or in the specification of components and interfaces.

John Rushby [16]

Desire for proofs of correctness of systems spawned the research area known as “formal meth-
ods”. Today’s systems are of sufficient complexity that testing is infeasible, both computationally
and financially. As an alternative, formal methods promotes mathematical analysis of a system
as a means of locating inconsistencies and other design errors. Techniques used can range from
writing system descriptions in a formal notation to verification that the designed system satisfies a
particular behavioral specification. A good general introduction to formal methods appears in [16].

Ideally, using formal methods increases our assurance in and understanding of our designs.
Assurance results from proof, while understanding results from the process of producing the proof.
Successful use of formal methods therefore requires powerful proof techniques and clear logical
notations. The verification research community has paid considerable attention to the former.
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Current techniques, many of which can be fully automated, handle sufficiently complex systems
that formal methods are now being adopted (albeit slowly) in industry. In our drive to provide
powerful proof methods, however, we have overlooked the latter requirement. Research has focused
on proof without paying sufflicient attention to reasoning. Current tools are often criticized as
too hard to use, despite their computational power. Most designers, not having been trained as
logicians, find the methodologies and notations very unnatural. Industrial sites starting out with
formal methods must often rely on external verification professionals to help them use these tools
effectively [12]. Tools that are not supportive of reasoning therefore fail to provide the full benefits
of formal methods. We can augment our current methodologies to address this problem, but we
first need to understand reasoning and its role in hardware design.

Barwise and Etchemendy [3] view valid reasoning as “the exploration of a space of possibili-
ties” defined by the given information and the desired reasoning task. Under this definition, the
more clearly a representation system allows for the exploration of this space, the more naturally
reasoning can be conducted within this representation. They note that reasoning is a heterogeneous
activity — people use multiple representations of information while reasoning, and those represen-
tations are often non-sentential forms such as diagrams. This is consistent with what occurs in
hardware reasoning, in which a combination of state machines, circuit diagrams, timing diagrams,
and sentential languages (such as VHDL) are often used.

We believe that diagrams naturally support such exploration, and therefore have the potential
to bridge the proof-versus-reasoning gap. Diagrams are usually cast aside as informal notations, but
they can be made rigorous. Some people view diagrams as too specialized to be suitable for formal
methods; certainly, if we were to construct a tool out of only one style of diagram, this would be
a legitimate concern. The key to using diagrammatic representations effectively is to use different
styles simultaneously. Multiple representations of information interact formally in heterogeneous
logics, an introduction to which appears in Barwise and Etchemendy’s paper in this volume [4].

We have developed a heterogeneous hardware logic that encompasses diagrammatic and sen-
tential representations. Section 2 develops a simple example to illustrate hardware reasoning with
diagrams. Section 3 defines our proposed logic; it supports circuit diagrams, timing diagrams, a
variant of state machines, and second-order logic. Section 4 contains additional examples, intended
to illustrate how the logic supports various styles of hardware reasoning.

2 Contrasting Diagrammatic and Sentential Representations

Consider a simple physical device: a single pulser (SP). A single pulser converts each input pulse
of arbitrary but finite duration into an output pulse of unit duration. There are many possible
implementations of a single pulser; we propose one which generates its output pulse in the clock
cycle following the fall of the input. Two views of the implementation, one diagrammatic and one
sentential, can be given as follows:

y SP(I,0) =323y : delay(l,z) A not(1,y) A and(y, z,0)
i L! o delay(1,0)=Vt: Ot +1)=1(t)
y not(I,O) =Vt :0(t)=1—-1(t)

and([l,IQ,O) =Vt: O(t) = Il(t) X Ig(t)

Notice that, up to a level of abstraction that ignores the lengths of the lines in the diagram,
both representations contain the same information. However, the presentation of that information
is crucial to how easily we can reason about it. For example, suppose we want to determine whether



the output of the circuit can ever be high when the input is high. Reasoning about this on the
schematic is straightforward: looking at the diagram, we see that the input value is inverted and
passed to an and gate which computes the output value. Given that a high and gate output requires
two high inputs, it is easy to conclude that the input cannot be high when the output is to be high.

We will now attempt to reason about the same question using the sentential representation.
Assuming the input is high (where high corresponds to numeric value 1 and logical true), we can
rewrite (either in our heads or on paper) the definitions to determine that both the delay predicate
and the not predicate have high as their first argument. This in turn produces a value for the
second argument of the not predicate, binding y to 0. We can now replace occurrences of y with 0,
from which we conclude that the output of the and gate is 0. Returning to the definition of SP, we
see that the output of the and gate is the output of SP; again, we conclude that the input cannot
be high when the output is high.

Although we arrive at the same conclusion using each representation, one could reasonably
argue that reasoning on the diagram is clearer than reasoning on the sentences. In this case, we
suggest that the qualitative difference lies in how each representation maintains the connections
between the components of the circuit. The diagram maintains the connections explicitly; in the
sentential representation, the user has to mentally connect the components via the common wire
names and concentrate on rewriting values based on those connections. The diagram frees the user
from having to reconstruct connection information, thereby allowing the user to concentrate on the
reasoning rather than the representation. This is a very small example, yet it illustrates our point
nicely: using diagrams for reasoning about circuit and value problems is advantageous.

Diagrams can also play a role in the specification and verification of systems. Timing dia-
grams are becoming a more popular notation for expressing behavioral specifications [17] [10],
presumably because people find them clearer to use than formalisms such as temporal logic. To
contrast methods, we present the behavioral specification of the single pulser in three representa-
tions: second-order logic, temporal logic, and timing diagrams. In each case, we want to specify
that the pulser produces an output pulse for each input pulse, it produces only one output pulse
for each input pulse, and all output pulses are of unit duration.

Higher-Order Logic:
specl(i,0) = (Vn, m :Pulse(i,n, m) D
dk:n<kEANE<mAOMk)=1A
(Vj:(m<jAj<mAOG) =15 ]=k)
spec2(1,0) = (Vk: O(k)=1D
Single Pulse(O, k) A
(Fn,m:n <k Ak <mA Pulse(i,n,m)))

Pulse(f,n,m)=(n<mA f(n—1)=0 A f(m)=0A
(Vt:(n<tAt<mD f(t)=1)))

SinglePulse(O, k) = O(k) A—O(k — 1) A=O(k + 1)
Temporal Logic:

rising_edge = =t A O
O (rising_edge — (O(—rising_edge U o))



O (rising_edge — <o)

0 (0= O(=0))
O (0 — O(—o U rising_edge))

Timing Diagrams:
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!
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The temporal logic representation uses the usual operators: next (O), henceforth(O), eventually
(¢), and until (U). The timing diagram notations will be explained in detail in section 3.4. In
this timing diagram, the dashed arrow indicates that any appearance of the second event must
be preceded by the first (safety). The solid arrow indicates that the edge is not only safe, but
in addition, any occurrence of the first event must eventually be followed by the second event
(liveness). The = 1 constrains the amount of time (in this case, one clock cycle) that must elapse
between the two events.

We claim that the timing diagram is the clearest of these behavioral specifications for purposes
of human reasoning. Specifications need to be easily understandable since systems are often built
based on a designer’s interpretation of them. The meaning of neither sentential specification is
immediately clear, despite the fact that each is written in a well-known logical notation. In fact,
the average person might construct a diagrammatic depiction of the sentential specifications in the
process of understanding their full meanings. As in the case of the circuit diagram example, the
important information — here, the relationship between timing events — is made more explicit
by the diagram than by the other two representations. Timing diagrams therefore seem a good
candidate for expressing event-based behavioral specifications.

To illustrate heterogeneous reasoning, we complete the single pulser example by proving dia-
grammatically that the proposed circuit diagram satisfies the specification expressed in the timing
diagram. The steps taken here, although appearing informal, are consequences of inference rules
in the logic; these rules are presented formally in section 3.6.

We start by assuming the implementation shown above and an input pulse of unspecified du-

ration on 2:
X
i — O
y

The circuit indicates the functional relationship between signals ¢, y, and z; the timing diagram
for ¢ can be extended to reflect these relationships; the resulting diagram appears below on the
left. Given the waveforms for y and z, the diagram can be further extended to display information
about signal o as in the diagram on the right:

i

Looking at the specification, one of our goals is to relate the events on ¢ and o. We can relate



the rising edge on ¢ to the rising edge on o based on an implicit edge between each pair of events on
signal z. Another implicit edge on z allows us to relate the falling edge on o and the second rising
edge on ¢. The top diagram shows the implicit edges and the lower two diagrams the inferences on
signals ¢ and o.

Comparing the specification we are trying to prove with our current derived timing diagram,
we note that we are missing constraints between the rising and falling events on o. We note that
each of these events is synchronous with another event and that an edge denoting duration one
exists between the other two events. We therefore add an edge to obtain the following diagram:

The diagram now contains quite a bit of information, much of which has been subsumed by
inference steps. We can always remove information from the timing diagram (though doing so
might weaken the information content):

Note that this diagram differs from the desired diagram only in the style of the arrow relating
the rising edge on o to the rising edge on ¢. Our informal definition of the edge types indicated that
the solid arrow subsumes the dashed arrow; we can weaken the existing arrow to a dashed arrow,
thus completing the proof.

The purpose of this example was not to advocate this style of deductive hardware verification;
automatic verification techniques are capable of handling large classes of circuits without the need
for such low level human intervention. Our intent was to demonstrate that there is a formal
structure to how we reason with diagrams and that that structure lends a certain degree of natural
clarity to the reasoning process.

What remains is to formalize diagrammatic reasoning methods like the ones used above in a
logic suitable for hardware design. That task is the focus of the next section. Although the focus



of this section was on the merits of diagrammatic representations, we do not mean to suggest that
traditional, sentential representations have no role to play. Indeed, we believe that for a hardware
reasoning system to be suitably flexible, sentential as well as diagrammatic representations need to
be included. We suspect that sentential representations will be particularly crucial for mathematical
reasoning, although we save exploration of that issue for later research.

3 Heterogeneous Hardware Logic

Our logic supports four representations: circuit diagrams, timing diagrams, algorithmic state ma-
chines (ASMs), and higher-order sentential logic. The diagrammatic portion of heterogeneous
hardware logic was first presented in [8]. This paper redefines the syntax and semantics for tim-
ing diagrams originally presented in [8]; in addition, the sentential portion of the logic is formally
presented for the first time. The circuit diagram and ASM portions of the logic are unchanged
from [8], but are provided here for reference. We first define a model of physical devices, which will
serve as a common semantic basis for the four syntactic representations. The syntax and semantics
of each representation is presented in turn in subsections 3.2 through 3.5. A discussion of logical
consequence and presentation of inference rules are provided in section 3.6.

3.1 Physical Devices

Our model of physical hardware is defined in two stages. First, we capture the structural aspects
of a device along with its interface with the external environment. Later, we augment this model
so that it can express how a device behaves over time while interacting with the environment.
We assume that wires in devices can carry values in {0, 1}. Ports are primitive objects providing
connection points for wires. We choose to associate voltage values with ports rather than wires;
the term assignment will refer to a total function from a set of ports to the set {0, 1}.

We assume that devices are composed only of wires and basic components: binary and and or
gates, inverters, and unit delay elements. Specifically, a basic component is a tuple (I,0, F, D)
where I and O are disjoint sets of input ports and output ports, F'is a function which assigns
each p € O a function F), from assignments on [ into {0,1}; and D is a function from O to the
non-negative integers indicating the delay of the component. We assume that delay elements have
d = 1 and all other basic components have d = 0.

An abstract device is a 5-tuple D = (I, 0, B, W, ¢) capturing the structure of a component where
I and O are disjoint sets of ports providing the external input and output interface to D, B is a
set of basic components, W is a set of wires and ¢ is a wiring function from W to sets of ports. We
assume that all ports in a device are distinct and that the sets ¢(w) partition the ports of D. Any
ports in 1 U O are called interface ports; all other ports are internal.

Although any abstract device corresponds to a piece of physical hardware, we are only interested
in considering those that meet certain well-formedness conditions. In defining those conditions, we
need to be able to talk about paths between ports within a device. Given an abstract device
D, there is a connecting step from port p; to port p;, denoted p; ~ p;, iff either p; and p; are
respectively an input and an output port to some basic component, or p; is an internal output port
or input interface port, p; is an internal input port or output interface port, and {p;,p;} C c(w)
for some wire w. A finite transitive chain of connecting steps forms a connecting path, denoted
Po ~* pn; a device contains a connecting cycle if p ~+* p for some port p. We call a device well-
connected if treating the basic components as nodes and the wiring function as giving rise to edges



yields a connected graph, if for each internal port p in D there exists a connecting path from p to
an element of O, and if every connecting cycle in D passes through a delay element.

In order to consider an abstract device in mid-computation, we need to know the values on the
ports of the device. A tuple (D, ) consisting of an abstract device and an assignment for its ports
will be called a concrete device. We require that all assignments included as part of a concrete
device are consistent with the structure of the device. That is, given (D, ), for all gates g in D,
the value in 7 on the output port of ¢ is consistent with the values in 7 for the input ports of ¢
and the function associated with g. The set of all possible assignments to the delay output ports
in a device forms its possible states. A concrete device is well-connected if the abstract device it
contains is well-connected.

We are interested in determining when two devices exhibit the same external behavior. This
requires that we be able to operate our devices over time. Given a well-connected concrete device
C' = (D, 1) and an assignment a to the input ports of D, there is a unique derived assignment i’ such
that (D, ') is a concrete device where i’ is defined as follows: if p is an interface input port of D,
then ¢(p) = a(p), if p is an output port to a delay element with input port pi, then 7/ (p) = i(pin),
if p is an output port of some gate ¢ then ¢/(p) is F), applied to the restriction of 7 to the input
ports of ¢, and if p is any other port i'(p) = i’(¢) where ¢ is the unique internal output port or
input interface port wired to p.! Concrete device (D, ) is said to follow from C given a, where i’
is the derived assignment from (D, ) and a.

The term assignment sequence refers to a sequence of assignments 41, i, ..., ¢ to the interface
input ports of a device. Given concrete device C' = (D, 7) and assignment sequence (i1, Iz, ..., k),
a run of C'is a sequence r = (Cyp, C1,...,Cy) of concrete devices such that Cy = C and for each
1 <7 <k, Cj is the concrete device that follows from C;_; given ¢;. The output of a concrete
device (D, 1) is the restriction of ¢ to the interface output ports O of D. The output of a run
r = (Cyp,C1,...,Ck) of a concrete device is a sequence (Og, O1,...,Of) where each O; is the output
of C;. The state of devices and runs are similarly defined by restricting assignments to the delay
output ports. For port p, the run-valuation of p is the restriction of these assignments to p.

Concrete devices Cy = (Dq, 1) and Cy = (Dg, i3) are behaviorally equivalent if Dy and Dy have
the same sets of input and output interface ports and for every assignment sequence a for Dy, the
output of the run of C'; under « is the same as the output of the run of C; under a. Abstract devices
Dy and Dy are behaviorally equivalent if for every (Dy, ¢1) there exists an i3 such that (Dq,4;) and
(D3, 13) are behaviorally equivalent, and vice versa.

3.2 Circuit Diagrams

In this logic, we consider circuit diagrams composed of icons representing binary and and or gates,
unit delay elements, inverters, and wires. We use a set-theoretic model to capture the syntactic
information contained in a given circuit diagram. In this model, we represent a wire line as an
ordered pair of the points it connects; a binary gate icon is modelled as an ordered triple (z,y, z),
indicating that the icon connects x and y on the left, in that order, from top to bottom, with z on
the right. Unary icons are similarly represented with an ordered pair.

Specifically, a circuit sketch sis a tuple (P, 1,0, W, N, D, A, R) where P is a set of objects called
the connection points of s, I and O are disjoint subsets of P called the input points and output
points of s, W, N, and D are disjoint subsets of P x P called the wire lines, negation icons, and
delay icons, and A and R are disjoint subsets of P x P x P called the and gate icons and or gate
icons. A wire w = (pq, pp) is branch-free iff w is the unique wire with p, as its first component;

'The proof of uniqueness appears in [8].



otherwise w is a branching wire. We use the term circuit sketch as opposed to circuit diagram
so that we may reserve the latter term for only those diagrams which are well-formed. A formal
definition of this term will be presented shortly.

Definition 1 Let s be a circuit sketch and D be an abstract device.

1. A depiction map from s to D is an injective function ¢ from the connection points of s into
the ports of D such that for all p € sp;

(a) pe sy — o(p) € Dr.
(b) p € so — ¢(p) € Do.
(c) If l = (pa,ps) is a wire line of s then ¢(p,) and ¢(py) are wired together by some wire

w € Dw; ¢(p,) must be an input interface port or internal output port and ¢(py) must
be an output interface port or internal input port.

(d) If n = (pa, pp) is a negation icon of s then ¢(p,) is connected to the input port and ¢(ps)
connected to the output port of some inverter in Dg.

(e) If d = (pa,pp) is a delay icon of s then ¢(p,) is connected to the input port and ¢(ps)
connected to the output port of some delay element in Dg.

(f) If ¢ = (pa,pr, pe) is an and-gate icon of s then ¢(p,) and ¢(py) are connected to the
input ports and ¢(py) connected to the output port of some and-gate in Dg.

(g) If g = (pa,py, pe) is an or-gate icon of s then ¢(p,) and ¢(py) are connected to the input
ports and ¢(pp) connected to the output port of some or-gate in Dg.

2. D is a structural implementation of s if there is a surjective depiction map from s to D and
the converse of requirements lc through 1g in the definition of a depiction map holds. This
is written D |, s.

3. D is a behavioral implementation of sif D is behaviorally equivalent to some device D’ which
is a structural implementation of s. This is written D & s.

Lemma 1 For any device D there exists a circuit sketch C' that is unique up to isomorphism on
circuit sketches such that D =5 C. For any circuit sketch C' there exists a device D that is unique
up to isomorphism on devices such that D =, C.

We use this lemma to make a deferred definition: a circuit diagram is any circuit sketch s for
which the device D such that D |=; s is well-connected. For the remainder of this work, we assume
we are dealing only with circuit diagrams, as opposed to circuit sketches.

3.3 ASM Charts

ASM charts are a variant of state machines that combine the traditional Mealy and Moore ma-
chines. They have an appearance reminiscent of flow-charts: rectangles denote states, diamonds
represent conditional branches, and ovals represent conditional (Mealy) outputs. Moore outputs
are designated by assigning a variable a value (either T or F') within a state rectangle. Each condi-
tional branch diamond contains the name of a single signal to be tested and has two paths leaving
it, one labeled T and one labeled I (where T and I are relative to the value of the signal tested in
the diamond). Each conditional oval contains one or more variable names to be assigned T when
control reaches the oval. Examples of ASM charts appear in figure 4 (page 17) and more extensive



discussion appears in [14]. As in the section on circuit diagrams, we will reserve the term ASM
chart for what we wish to consider well-formed diagrams, using the term ASM graph for the general
case.

An ASM graph g is a tuple (S, B,O, N, R, P) where S is a set of state objects, B is a set of
conditional branch objects and O is a set of conditional output objects such that .S, B, and O are
all pairwise disjoint. We will refer to the union of these sets as the objects of g. N is a set of signal
names. R is a subset of S x S x P(N)x P(N) called the next state transitions of g.> The first and
second elements of these tuples are called the source state and target state, respectively. The third
and fourth elements are called the true conditions and the false conditions, respectively. Finally, P
is a subset of S x N x U x P(N) x P(N) called the output conditions of g. The first two elements
are called the asserting state and asserted variable, respectively. The third element is called the
assignment value and is a member {T', F'}. The last two elements are called the true conditions and
the false conditions, respectively. We will use the term external signalfor those elements of NV that
appear in the true or false conditions of some element of R U P but are not the asserted variable
for any output condition; non-external signals are classified as internal.

In order to relate ASM graphs to devices, we need to be able to talk about their computational
behavior. A signal-value assignment for ASM graph is a function from the names N to the set
{T, F}. An exaternal signal-value assignment is the restriction of a signal-value assignment to the
external signals. (g, s) is an executing ASM graph where g is an ASM graph and s is some state in
g. The following symbol, when placed near state s in ASM graph ¢, denotes that (g, s) is executing
at time .

O\

Given executing ASM graph (g, s) and a signal-value assignment ¢ for ¢, a next-state transition
(ts,ty,ce,cp) € R is satisfied by s and i if t; = s, i(n) = T for all names in ¢;, and ¢(n) = F for
all names in cy. If there is exactly one such transition satisfied by s and 7, this transition is called
the next state of g under s and i. We say that output condition (ts, n,u, ci, cy) € P is satisfied by
s and i if t; = s, i(v) = T for all names v in ¢, and i(v) = F for all names v in ¢;. Let 7/ be the
unique signal-value assignment such that for all output conditions (t,, n, u, ¢, ¢y) satisfied by s and
i, 4'(n) = u, i'(z) = i(2) if « is an external signal and ¢'(z) = F for all other signals z. ¢’ is called
the signal update of g under s and i.>

An ASM graph ¢ is deterministic if no two next state transitions are satisfied by the same
state s and signal-value assignment i; it is called transitionally complete if for all states s and all
signal-value assignments ¢ there exists a next-state transition that is satisfied by s and ¢. An ASM
graph that is both deterministic and transitionally complete will be called an ASM chart. This
corresponds to a well-formedness definition on ASM graphs.

We have established sufficient framework to discuss when a given ASM chart describes a given
physical device and when a given device implements the algorithm depicted in an ASM chart.
Given ASM chart g and abstract device D, a state map from ¢ to D is a function from the states .S
of g to the possible states of D. Function ¢ from the signal names of ¢ to the ports of D is called
a signal map iff ¢ maps each external signal in g to an input interface port of D and each internal
signal in ¢ to an internal output port in D. ¢ is called a complete signal map iff it is a signal map
with every interface port (input and output) of D in its co-domain.

*The notation P(N) represents the powerset of N.
FWe are using I as the global default value for signals, though defaults could be assigned in various other ways.
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Figure 1: Types of edges that can be drawn on timing diagrams. Safe edges require the source
event to occur before or simultaneously with the target event. Live edges require the target event
to occur after the source event. Combined edges are used when safe and live edges are needed
between the same two events. Simultaneous edges require the events to happen concurrently, while
conflict edges do not permit the events to occur simultaneously. These notations and definitions
are taken from the work of Schlér and Damm[17]. In order to draw simultaneous edges, it is often
necessary to cross events that should not be synchronized. In the event that a synchronization line
applies to only some of the events it crosses, those events it relates will be attached to the line
using a dark circle.

We will establish relationships between ASM graphs and devices by simulating each on the
same inputs and seeing how closely the state transitions and output behaviors correspond. Doing
this requires that we know when a signal-value assignment and a port assignment are reflecting the
same values. Given a signal map ¢ and signal-value assignment ¢, assignment a for D is compatible
with ¢ and 4 iff a(p) = i(¢~!(p)) for all ports p in the co-domain of ¢. A state map ¢, and a signal
map ¢,, are said to be feasible for g and D if for all signal-value assignments ¢ for g and all states s
in g there exists an assignment a for D which is compatible with ¢, and ¢ and reflects state ¢;(s)
such that:

1. If §' is the next state of ¢ under s and ¢, then ¢4(s’) is the next state of D under ¢,(s) and
a.

2. If ¢ is the signal update of ¢ under s and ¢, then assignment «’ derived from (D,a) is
compatible with 7’.

If 5 and ¢, are feasible for ¢ and D and the converse of requirement 1 holds for all 7 and s, we
say that ¢, and ¢, capture g and D.

As in the section on circuit diagrams, we now define three relationships between ASM graphs
and devices that capture the various granularities of relationships between them.

Definition 2 1. g describes D if there exists a state map and a signal map that are feasible for
g and D.

2. D is a structural implementation of ¢ iff there exists a surjective state map and a complete
signal map that capture g and D. This is written D |, ¢.

3. D is a behavioral implementation of g if D is behaviorally equivalent to some device D’ which
is a structural implementation of g. This is written D = g.

3.4 Timing Diagrams

The timing diagram syntax and semantics originally presented in [8] is too restricted to be able to
represent general timing relationships. We have updated our syntax and semantics to follow the
much more flexible system of Schlér and Damm [17]. A timing diagram is a collection of individual
waveforms whose events are related by a series of edges between them. The types and notations
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for edges are given in figure 1 and include notations for safety requirements, liveness requirements,
and coincidence requirements. A timing level is an element of the set {high, low, don’t-care, rising,
falling}. We define a timing pattern as a pair (s,c) where s is a sequence of timing levels and ¢ is
a color used to indicate the role of the signal in the system as one of input, output, or internal. A
timing pattern is well-formed if high is never immediately followed by low or rising, low is never
immediately followed by high or falling, rising is never immediately followed by rising or falling,
and falling is never immediately followed by rising or falling. A timing event is defined as a tuple
(p,t) where p is a timing pattern and ¢ is an index into ps such that 7 is no larger than the length
of ps. We will write p(7) to refer to the timing level in p, at time 7.

Given a collection C' of timing patterns, an edge on those patterns is a pair of the form (e, e3)
where e; and ey are timing events on patterns in €. An edge may be annotated with a duration
marker consisting of a positive integer or integer variable and one of the symbols +, — =:; these
markers specify bounds on the amount of time that may pass between the two events. A partial
function mapping edges to duration markers is a duration mapping. We consider a timing diagram
to be a tuple (N, P, Es, 1, En, Ec, ¢) in which N is a set of names, P is a function from N to
timing patterns, Fg is a set of safe edges, Fp, is a set of live edges, Fjs is a set of simultaneous
edges, F¢ is a set of conflict edges, and ¢ is a duration mapping on Fg U FTp.

In comparing devices and timing diagrams, a timing value v; and a numeric device value vy are
said to correspond if vy is high and vy = 1 or if v; is low and vy = 0. If v; is don’t-care, then it
corresponds to any value of vg. We relate the signal names in a timing diagram T to the ports
of a device D using an injective function called a waveform map in which input signals in T" map
to input interface ports of D, output signals in " map output interface ports of D, and internal
signals in T map to internal output ports of D. The defining indices of a timing pattern are those
that map to values in {high, low, don’t-care}.

Given a run R = (D, ag), (D, ay),...,(D,a,) of a concrete device, a timing event (p, ), and a
port s in D, (p, ) matches s in C; iff if 7 is a defining index of p then p(7) corresponds to a;(s), if
p(7) = rising then a;(s) =0 and a;41(s) =1, and if p(i) = falling then a;(s) = 1 and a;4;(s) = 0.
A timing diagram T is valid for R under waveform map ¢ between T and D iff

1. For every signal s € T', there exists a monotonic function f from the indices of s to {0,...,n}
such that for all defining indices 7, the value of ¢(s) in Ry corresponds to s(7).*

2. For every ((s1,11), (s2,%2)) € Es and for all j, 0 < j < n, if (sq,43) matches ¢(sg) in R;, then
there must exist k, 0 < k < 7, such that (s1,4;) matches ¢(s1) in Ry.

3. For every ((s1,11), (s2,%2)) € I, and for all j, 0 < j < n, if (s1,4;) matches ¢(s1) in R;, then
there must exist k, j < k < n, such that (s3,?2) matches ¢(sz) in Rj.

4. For every ((s1,11), (s2,12)) € I, if (s1,11) matches ¢(s1) in R;, then (sy,73) matches ¢(s2)
in R;.

5. For every ((s1,11), (S2,%2)) € Ec, if (s1,71) matches ¢(sq) in R;, then (sq, i) does not match
o(s2) in R;.

Definition 3 Let T be a timing diagram and let D be a device.

1. T describes D, written D |= T, if there is a waveform map ¢ from T to D such that for all
runs R of D, T is valid for R under ¢.

“This function f is not necessarily unique.
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2. D is a structural implementation of T if T describes D using a surjective waveform map.
This is written D =, T.

3. D is a behavioral implementation of Tif D is behaviorally equivalent to some device D’ which
is a structural implementation of T'. This is written D =, T

3.5 Sentential Logic

Our sentential logic is second-order logic augmented with arithmetic operations. We assume the
existence of a sort NV of natural numbers and a sort B of booleans with boolean constants f and t.
We also assume we have temporal variables ¢y, ¢, ..., temporal constants 0, 1, ... for each number
kin N, and function constants f for every function from N to N. Given a concrete device C' and
an assignment sequence A, we associate with each port p in C' a port function constant p from N
to B; for each ¢ up to the length of A, p(i) returns the value on p in device C; in the run of C'
on A, and for all other 7, p(¢) returns f. Port value 0 is equivalent to boolean constant f and port
value 1 is equivalent to boolean constant t. We will assume the existence of port function variables
W, X,Y.

The class of temporal terms is the smallest class containing the temporal variables and constants
and closed under the following operation: if ¢ is a temporal term and f is a function from N to N,
then f(t) is a temporal term. Given a function ¢ mapping temporal variables into N, we extend ¢
to a function mapping all temporal terms ¢ into N in the obvious way by recursion on terms:

o(F) = k

o(f(1) = f(o(t))

We also have a set L of value terms, defined as the smallest set containing t, f, F'(¢) for each
temporal term ¢ and ' € N — B, X (t) for each temporal term ¢ and port function variable X,
and closed under the following: if {;,ls € L, then =y and ({; Aly) are in L. We assume that V is
defined as usual from — and A.

Given any function ¢ from temporal variables into N and port function variables into N — B,
and any value term [, we define {[¢] to be the boolean value that [ takes on under the mapping ¢.
This is defined by recursion as follows:

t[¢] = true
f[¢] = false
F(t)[¢] = F(o(1))

X (t)[o] = o(X)(o(1))
(=D)[¢] = =(l[¢])

(L A1) (o] =(L]e] A la[¢])

The atomic formulae are the set of expressions of the form t; < ¢y, t1 = t5 for temporal terms
t; and to, and [y =I5 for value terms [; and l5. The set of formulae of our language is the smallest
set containing the atomic formulae and closed under the following: if B; and Bs are formulae, then
so are =By, (By A By), VX By, and VtB;; V and 3 are assumed to be defined as usual from these
connectives.

We define the semantics of formulae in terms of concrete devices and assignments to variables, as
one would expect. For any formula F/, we define C, A |= F[¢] recursively on F, where C' = (D, 1) is a
concrete device and A is an assignment sequence of length k for D. ¢ maps temporal variables into
temporal constants 0...%k and port function variables into port function constants. The notation
B[ X /p] denotes the substltutlon of p for X in By; By[t/t;] is defined analogously.
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C, A= f9]

C, A E t[g]

C, A (t = t)[] iff ¢(t1) = ¢(t2)
C, A (t < t)[a] iff ¢(t1) < o(t2)
CAE (I = L)[4] iff ¢(l1) = &(la)

¢, A ): _‘Bl[(b] ifC', A b& Bl[(b]
CL A (By A By)6] iff C, A | B[] and C, A |= Bylg)
C, Al (VXBy)[¢] iff €, A |= (B1[X/P])[¢]
for each port function constant associated with a port in C
C, Al (ViBy)[o] iff C, A = (Bit/tc])[9]

for each temporal constant t. € 0...k%

Definition 4 Let C' = (D, ) be a concrete device and F be a formula in our sentential language.
E describes C', written C' |= F, if for all assignment sequences A for D, there exists a function
¢ mapping port function variables into port function constants for C' and temporal variables into
temporal constants 0...k, where k is the length of A, such that C, A = E[¢]. We say that F
describes D, written D |= F if for all assignments ¢, (D7) E E.

3.6 Rules of Inference and Methods of Proof

Although a general discussion of the theory of heterogeneous inference is out of the scope of this
paper, our presentation is motivated by the work of Barwise and Etchemendy [1]. When stating
these rules, we use the term representation as opposed to the more traditional term formula to
avoid the sentential connotations associated with the latter. In general, a rule can be formulated
to infer representation G' from a set of representations .S if it is the case that whenever a device
D models every element of S, D also models G in this case GG is said to be a logical consequence
of S. While this requirement does not dictate which of the modeling relationships (structural or
behavioral) should be used in defining rules of inference, we use behavioral modeling to create rules
between diagrams of the same type and structural modeling to create rules between diagrams of
different types.

There are a number of inference rules for the full logic; only a subset are relevant to the examples
presented in this paper. Rules are presented with their diagrammatic depictions where feasible.
We do not present the standard inference rules of higher-order logic or the rules of arithmetic, but
assume they are defined within the system.

We start by defining some general methods of proof. In these definitions, we consider a proof
to be a sequence of representations such that each element of the sequence is either a single rep-
resentation or another proof; each proof appearing as a complete element of a proof P is a direct
subproof of P. Each proof starts with a series of representations called the initial assumptions of
the proof. The context for an element of a proof is the set of elements that have preceded it in the
proof. We will consider a proof to be valid if every element that is not an initial assumption is the
logical consequence of its context. A goalis a representation that we wish to prove from the set of
initial assumptions. The goal is satisfied if it is the last representation in a valid proof.

In the course of producing a proof, it is often the case that there are many possible cases that
need to be considered in order to complete the next proof step; a simple example of this from
sentential logic arises when working with disjunctions. In this case, it is common to consider each
possibility in turn and then to prove that the desired goal is satisfied in each case. The following
rule generalizes this notion of breaking into a set of cases:
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Rule 1 (Condition Exhaustive) Let C1,..., (), be a set of direct subproofs of a proof P, let R
be some representation, and let A be some property that can be associated with R. C1,...,C), are
exhaustive with respect to A iff every context in which R has property A is subsumed by some C;.

As an example of how this rule can be instantiated for a particular property, we define a rule
for breaking into cases based on the states of an ASM chart that assert a particular variable.

Rule 2 (Asserting States Exhaustive) Let A be an ASM chart, let v be any signal in A, and
let w be a truth value. Let S be the set of all states s such that (s, v, u, ¢, ¢f) is an output condition
in A. Direct subproofs Cy,...,C, are Asserting States Fxhaustive if each element of .S is the state
of A in the initial assumptions of some C;.

Usually, our goal in splitting into cases is to derive some particular representation from each
case so that the representation may be extracted from the cases and asserted at the level containing
the subproofs. We express this in our logic using the following rule:

Rule 3 (Merge) Let P be a proof containing an exhaustive set of cases Cy,...,C,, and let R be
a representation that is satisfied in every C;, 1 <i < mn. R is true in P by the Merge rule.

We now turn to rules that are particular to the different types of representations. We begin
with four rules related to ASM charts.

Rule 4 (Asserting State) Let A be an ASM chart, let v be any signal in A, and let u be a truth
value such that there exists a unique state s € A that can be the asserting state for v with value
w in the current context. If ¢ is a time variable such that v(t) = w, then it follows by the rule of
Asserting State that (A, s) is executing at time ¢.

Rule 5 (Value in State) Let (A, s) be executing at time ¢. Given output condition (s, n,u, ¢y, ¢y),
if every element of ¢; is true in the current context and every element of c; is false in the current
context, then n(t) = u follows by Value in State.

Rule 6 (State Transition) Let (A, s) be executing at time ¢. Given next state transition (s, s, ¢, ¢),
if every element of ¢; is true in the current context and every element of c; is false in the current
context, then (A, s’) is executing at time ¢ + 1 by the rule of State Transition.

Rule 7 (Looping) Let (A, s) be executing at time ¢ with a next-state transition (s, s, ¢, ¢f) such
that there is exactly one signal in ¢; U ¢y. Let v name this signal.

1. If v € ¢, Ft; t1 > t A —w(ty) is true in the current context, and #; is the smallest such
time, then (A, s') is executing at time ¢; + 1 under the looping rule, where (s, s, {}, {v})is a
next-state transition in A.

2. If v € ¢g, 3ty 1 > tAV(ty) is true in the current context, and ¢; is the smallest such time, then
(A, s') is executing at time t; + 1 under the looping rule, where (s, s, {v},{}) is a next-state
transition in A.

We now present some rules associated with circuit diagrams. It is straightforward to define the
rules of boolean algebra in terms of their associated circuit diagram representations; as a result,
we give only one example of such a rule here, although the full set of boolean algebra rules are
defined within the logic. We define one instance of the distributive law below; its diagrammatic
representation appears in figure 2.
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Figure 2: Inference rule corresponding to distributivity.
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Figure 3: The simulation rules on circuit diagrams; high voltages are denoted in black and low
voltages are denoted in grey. Thin wires are considered to have unknown/don’t-care voltage.

Other rules on and gates, such as those involving low voltages, can be derived from the existing
and rules. Rules for or gates can be derived from both the and rules and the inverter rules.

Rule 8 (Distributivity) Given circuit diagram C' with a branch-free wire w connecting the output
of an or gate r to the input of an and gate «a, circuit diagram C” is derived by means of distributivity
by adding new and gates a; and a9, adding new or gate ry, wiring the output of r; to the output
of a, wiring the non-w input to @ to an input port of each of a; and ag, wiring one input of r to
the unused input port on a; and the other input of r to the unused input port on a,, wiring the
outputs of a; and a; to the input of ry, and removing a, w, and r.

In addition to the boolean algebra rules, we define what can be thought of as simulation rules
on circuit diagrams — rules that allow us to infer the propagation of voltage levels on wires across
gates. These rules should be intuitively clear. A collection of these rules appears in figure 3; the
formal definition of the first rule can be given as:

Rule 9 (And High Output) Let a be an and gate whose output voltage is known to be high. It
follows that the voltage on either input must also be high.

We use a variety of timing diagram inference rules in this paper: some between timing diagrams
and other timing diagrams, some between timing diagrams and circuit diagrams, and some between
timing diagrams and sentential logic. The first two types of rules were used in the single pulser
discussion in section 2. The rules are now presented formally; the reader is referred back to the
single pulser discussion for examples of using the rules.

Rule 10 (Edge Transitivity) Let 7" be a timing diagram with edges (eq, e3) and (ez, es3) of the
same type. Unless (e1, e2) and (e, e3) are conflict edges, timing diagram T is derived from T by
means of edge transitivity by adding new edge (ey, e3) of the same type as (e1, €2) and (eg, €3).

Rule 11 (Weakening) Let 17" be a timing diagram. Timing diagram 7" is derived from 71" by
means of weakening by either removing an edge from Fg, Fr, Fp, or E¢, or by removing a timing
pattern p from the range of P and removing all edges from Fg, Fr, Fur, and F¢ containing an
event on p.
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Rule 12 (Time Equality) Let T be a timing diagram with edges (ey, €3), (€3, €4) € Epr and edge
(e1,€3) of any type. Timing diagram 7" is derived by means of time equality by adding edge (ez, e4)
of the same type as (ey, es). If (e, e3) € EgU LT, then ¢((ez, eq)) = d((e1,€3)).

The next definition gives an example of how we infer additional timing diagram information
from a timing diagram and a circuit diagram. In this definition, we define the flip s’ of a sequence
s of timing levels such that /(i) = high if s(¢) = low, §'(i) = low if s(i) = high, §'(i) = rising if
s(7) = falling, and §'(¢) = falling if s(¢) = rising.

Rule 13 (Waveform Negation) Let 7" be a timing diagram, let C' be a circuit diagram, and let
D be a device such that D =T and D |, C. Let (p,, py) be an inverter in C' such that 7' contains
a timing pattern p = (s, ¢) for the signal name corresponding to p,. Timing diagram T’ follows by
means of waveform negation by adding a new timing pattern p’ = (s’, ¢/) such that s’ is the flip of
s and ¢ is the color associated with the function of p, in €, and for each i up to the length of s,

{(p,7),(p', 1)) € En.

In the next section, we will use rules between timing diagrams and sentential logic. Unlike most
of the other rules in the system, these are essentially translation rules. One example is the rule
that produces a live edge from a sentential formula:

Vi (mAQ@)AAR+1D) =T ' >tA-B(t)AB(1'+1))
A
s

4 The Island Traffic Light Controller

We are now ready to demonstrate the flexibility of the logic on an example. Assume that we want
to design a controller for the traffic lights at a one lane tunnel connecting the mainland to a small
island as pictured below. There is a traffic light at each end of the tunnel; there are also four
sensors for detecting the presence of vehicles: one at tunnel entrance on the island side (IE), one
at tunnel exit on the island side (IX), one at tunnel entrance on the mainland side (ME), and one
at tunnel exit on the mainland side (MX).

.
n &

MX
- -
T _

Tunnel ~.

In addition, there is a constraint that at most sixteen cars may be on the island at any time. We
make the environmental assumptions that all cars are finite in length, that no car gets stuck in the
tunnel, that cars do not exit the tunnel before entering the tunnel, and that cars do not leave the
tunnel entrance without traveling through the tunnel.

The solution discussed here consists of three communicating controllers: one for the island lights,
one for the mainland lights, and one tunnel controller that processes the requests for access issued
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Dispatch

Figure 4: ASM charts for the Island Traffic Light Controller; the island light controller is on the
top left, mainland light controller on the top right, and tunnel controller on the bottom. IGL and
IRL are the green and red lights for the island, 1U indicates that the island is using the tunnel, IR
indicates that the island is requesting the tunnel, IY indicates that the island is being instructed
to release control of the tunnel, and IG indicates that the island has been granted control of the
tunnel; a similar set of signals has been defined for the mainland. TC is a count of the number of
cars presently inside the tunnel and IC is a count of the number of cars presently on the island.
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Figure 5: Representations of the environmental assumptions.

by the other two controllers. State machines depicting each of the three controllers are provided in
figure 4. We would like to establish that our solution has at least the following properties:

1. Cars never travel both directions in the tunnel at the same time.

2. Access to the tunnel is not granted until the tunnel is empty.

3. Lights don’t turn green until access is granted.

4. The tunnel is used once granted.

5. Requests for the tunnel are eventually granted.

6. Once a car arrives at an entrance, the light at that entrance eventually turns green.

7. All commands to yield the tunnel are acknowledged by the island and mainland controllers.
8. There are never more than 16 cars on the island.

9. Counters are only changed once per car.

10. Counters do not move if increment and decrement signals are asserted simultaneously.

Some of these properties, such as 2 — 7, are natural candidates for finite-state verification
techniques, others, such as 10, are easier to reason about once an implementation of the system
is designed; we will demonstrate how our logic supports reasoning at each of these levels. As an
example of verification at the state-machine level, consider the condition that all yields issued by
the tunnel controller should eventually be acknowledged; many of the other conditions above could
also be verified in a similar manner. Assuming the island controller is being asked to yield, this

can be expressed using timing diagram
Y é
U

We now provide a proof, using the inference rules presented in section 3.6, that this timing dia-
gram is a logical consequence of the three controller diagrams and the environmental assumptions.
Formally, we represent the environmental assumptions as shown in figure 5. The proof is given
in natural deduction style. Ideally we would develop this proof in an animated system (akin to
Hyperproof) that updated each representation with the information from the current context as the
proof progressed; lacking animation in this presentation, we provide the diagrams corresponding to
each step explicitly. To keep the proof compact, rather that insert the state machine diagrams into
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the lines of the proof, we insert a grey icon indicating that the formula at a given step is a diagram;
the diagrams corresponding to each step are numbered and are provided following the proof. We
use a black rectangular icon to stand for the goal diagram on the appropriate lines.
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Value in State; 16

State Transition; 14, 15
Value in State; 18

State Transition; 16,19
Value in State; 20
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Assert States Exhaust; 8, 12
Excluded Middle; 5, 7




Green

(8)

Assuming we are satisfied with the state-level design, the next step becomes designing an
implementation of the system. This too can be done using the inference rules of the logic. There
are several algorithms for converting a state machine into physical hardware [14]; for this example
we will take a state-encoded approach to the design. The circuit diagrams provided in figure 6 for
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Figure 6: Circuit diagrams for the island light controller. The top diagram is naively produced
using a state-encoding of green=00, entering=01, exiting=10, and red=11. The simplified yet
behaviorally equivalent bottom diagram is derived from the first using the boolean algebra based
circuit diagram inference rules .
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the island light controller can be shown to be logical consequences of the associated state machine
in figure 4. Although the logic includes a rule for inferring implementations from ASM charts, that
rule is not presented here.

The diagrams in figure 6 suggest how the logic can be used for design. Assuming we derive the
top diagram under an inference rule for state-encoded implementations of state machines, there
are a number of optimizations we could make to minimize the number of gates in the circuit. The
bottom diagram reflects one possible minimized circuit obtained from the original by means of the
boolean algebra based circuit diagram inference rules. The soundness of these rules, established but
not proven here, is sufficient to assure us that the two circuits are behaviorally equivalent. We are
in the process of proving a completeness result based on a canonical form for circuit diagrams [7];
this would enable us to transform any two behaviorally equivalent circuit diagrams into one another
using the inference rules.

Given implementations of the three controllers, all that remains is to design the components
necessary to interface the three implementations. While some of the interface consists only of
wires, additional logic is required to integrate the counters and the needed comparator into the
final design. This brings us back to the issue of verification, as we would like to formally establish
the correctness of the interface logic.

As an example, consider the logic required to interface to the counter TC that records how many
cars are currently in the tunnel. Assume we have chosen to use a LS191 up-down counter [13] in
our implementation. This counter has an enable signal and a single signal for indicating whether
the counter should count up or count down. When the enable signal is low, a low voltage on the
up/down line causes counting upwards and a high voltage on the up/down line causes counting
downwards; no counting occurs when the enable line voltage is high. Once we interface the controller
implementations with the counter, we must verify that our interface logic routes signals properly
to the LS191. Assume that we used the following interface logic, where I-TClncr is the signal TC+
from the island light controller and the remaining signals are analogously defined.

I-TClncr
M-TClIncr
Enable
I-TCDecr
M-TCDecr
Down/Up

We can use the simulation style inference rules on circuit diagrams to verify that our interface
logic behaves as desired. As an example proof, consider the case when the island controller issues a
tunnel counter increment and the mainland controller issues a tunnel counter decrement.® In this
case the counter should hold its current value. The following proof consists of two diagrams. In
the first, we assume that both I-TClncr and M-TCDecr are asserted simultaneously. The second
diagram shows the resulting asserted signals once the simulation rules are applied to the first
diagram.

®This combination is possible in our proposed state machines.
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I-TClncr
M-TClIncr

Enable
I-TCDecr
M-TCDecr
Down/Up
I-TClncr
M-TClncr
Enable
I-TCDecr
M-TCDecr
Down/Up
5 Conclusions
Diagrams are a powerful — and underutilized — notation. They are good representations for

hardware reasoning because they are specialized to particular properties of systems. Combining
specialized representations within a heterogeneous logic provides a powerful paradigm for support-
ing reasoning in addition to proof. A heterogeneous hardware logic that includes diagrams therefore
suggests a possible solution to the usability problem in formal methods.

Our heterogeneous logic approach has been criticized as being unnecessarily complex [15]; tra-
ditional, sentential logics are argued to be simpler and more flexible because they can model many
properties using a single notation [9]. Such generality comes at a cost with respect to natural
reasoning. We feel that complexity in the underlying system is a suitable tradeoff for greater
usability.

Other researchers have explored formal usage of diagrams in limited situations in hardware rea-
soning. Timing diagrams have received the most attention, being cited as a more natural formalism
for use in place of temporal logic [17] [10]. Other systems have employed more general usage of
diagrammatic representations [5] [18] [6]. All of these systems formalize diagrams by translating
them into known sentential logics; proofs in these systems are carried out in the sentential logic,
with the diagrams serving as interface tools.

The translation approach is reasonable when using a single diagrammatic notation. In order to
use this approach to define inference rules in our heterogeneous framework, we would have to either
translate all of the representations into a common sentential logic or establish formal connections
between multiple existing sentential logics. Rather than risk adding logical errors via the translation
process, we define our rules directly on the diagrams.

There are additional advantages to our approach. Diagrams often encode substantial amounts
of detailed information that may or may not be relevant to a verification effort. Translation,
unable to filter what information to capture and what to ignore, might produce a considerably
larger specification than is actually necessary. Our approach is also highly modular; adding a new
representation does not involve integration of additional underlying logics.

Additional research is required before we can construct a tool based upon our logic. We need to
extend it with support for making abstractions [11] and with better support for automatic verifica-
tion methods. Automatic methods are required for handling large examples. One might question
why, if we intend to automate the logic, we are concerned with how well the logic supports human
reasoning. Automatic methods cannot fully handle many industrial size examples due to complex-
ity bounds. Human reasoning is often needed in order to decompose a problem into pieces that are
sufficiently small for automatic methods. In addition, the decidable logics underlying automatic
methods are necessarily limited in expressibility; human reasoning is required for problems falling
outside of these limitations. Addressing these two issues would yield a prototype system geared
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towards proof and reasoning that will help bring formal methods closer to designers.
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