
The Recurring Rainfall Problem

Kathi Fisler
WPI Dept of Computer Science

kfisler@cs.wpi.edu

ABSTRACT
Many studies have used Soloway’s Rainfall problem to ex-
plore plan composition and programming errors by novice
programmers. Few of these have explored students from CS1
courses that use functional programming. The concepts and
programming styles commonly taught in such courses give
CS1 students more viable plan-composition options than in
traditional imperative CS1 courses. Using data from five
functional-language CS1 courses at four schools, we show
that our students choose different high-level structures and
make fewer low-level errors compared to results of other
Rainfall studies. We discuss the potential role of language in
these results and raise various questions that could further
explore these effects.

Categories and Subject Descriptors: K.3.2 [Computers
and Education]: Computer and Information Science Educa-
tion

Keywords: Plan composition, novice programmers, func-
tional programming

1. INTRODUCTION
Soloway’s Rainfall problem [10] has been used in several

studies to assess students’ progress in learning to construct
programs. Rainfall is interesting because it is conceptu-
ally straightforward (a variation on averaging a collection of
numbers), yet with enough components to raise subtleties in
code. Soloway proposed the problem in the context of ex-
ploring plan composition: how students weave together the
different components of a problem into a single program.

Over the years, multiple papers have reported on student
performance on Rainfall, sometimes categorizing the errors
that students make. Across prior studies, students typi-
cally solved Rainfall under three common constraints: they
(nearly always) programmed imperatively, they (usually)
obtained the numeric data through keyboard input, and they
(often) had limited prior exposure to data structures, with
the possible exception of arrays. These constraints don’t
arise in CS1 courses based on functional programming. Such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER’14, August 11-13, 2014, Glasgow, Scotland, UK.
Copyright 2014 ACM 978-1-4503-2755-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2632320.2632346.

courses emphasize different linguistic constructs (e.g., recur-
sion instead of loops), rarely cover interactive I/O, and have
students work extensively with lists from the early weeks of
a course. This naturally raises a question: what do students
from functional-first CS1 courses do with Rainfall?

Both facility with lists and limited use of I/O are interest-
ing parameters. Because lists are easy to construct dynam-
ically (unlike many array implementations), they enable a
variety of viable high-level structures for Rainfall programs;
some of these are harder or inaccessible with other or no data
structures. Earlier Rainfall studies have shown that I/O pat-
terns are difficult to get right, especially when data can be
noisy. Avoiding I/O frees students to focus on computa-
tional tasks that arise across devices and platforms. Study-
ing Rainfall on functional-first CS1 students could change
how we view this classic question.

This paper makes three contributions. First, we propose
a two-level analysis methodology for plan composition that
looks at (a) the high-level structure of a solution, and (b)
low-level errors when implementing tasks within that struc-
ture. While our coding rubric draws heavily on those from
prior Rainfall studies, we found existing rubrics too coarse-
grained for important nuances that arise in our dataset. Sec-
ond, we apply our methodology to over 200 Rainfall sam-
ples across five functional-first CS1 courses at four schools
(three universities and one high school) in the USA; we
partly explore an additional dataset from a traditional Java-
based CS1. Our functional-first participants produce solu-
tions with rather different structures than in earlier studies,
and seem to make fewer low-level errors. Our third contribu-
tion reflects the formative nature of this study: we identify
several open research questions inspired by our observations.

2. THE RAINFALL PROBLEM
Soloway proposed the Rainfall problem in the 1980s [10].

The original wording was simply about computing averages:

Write a program that will read in integers and
output their average. Stop reading when the
value 99999 is input.

Soloway identified four key goals within this problem: tak-
ing in input, summing the inputs, computing the average
(which involves counting the inputs), and outputting the
average. Programs that solve this problem must compose
fragments of code that achieve each of these goals. Soloway
proposed this problem in part to study approaches to plan
composition, particularly in novices.

The“Rainfall”context has inspired many variations on the
problem: some versions [1, 9] added negative numbers that
the programmer should treat as input errors; some added
output requirements [1], such as reporting the count of days
with non-zero rainfall or the maximum daily rainfall in ad-
dition to the average. All variations shared common core
goals of summing, counting, averaging, input and output.

In this study, we include negative numbers in the input,
but only require producing the average as output. We also
provide the inputs in a data structure (as our students had
not learned I/O). Our specific wording is as follows:

Design a program called rainfall that consumes a list
of numbers representing daily rainfall amounts as en-
tered by a user. The list may contain the number -999
indicating the end of the data of interest. Produce
the average of the non-negative values in the list up to
the first -999 (if it shows up). There may be negative
numbers other than -999 in the list.

3. A FUNCTIONAL-FIRST CS1
Functional programming has many broad characteristics,

including using recursion over unbounded-depth data struc-
tures (such as lists and trees), using few (if any) side-effects,
and parameterizing functions over other functions. Func-
tional languages and their corresponding programming styles
vary widely (e.g., contrast LISP, Haskell, and Erlang).

This study focuses on a particular functional-first CS1
curriculum, How to Design Programs (henceforth htdp) [2].
htdp teaches a data- and test-driven approach to program
design. While htdp can be (and has been) used with non-
functional languages, the textbook and accompanying soft-
ware use Racket (a variant of Scheme).

The first part of htdp teaches a bottom-up method for de-
signing programs: given a problem, students define required
datatypes, make concrete instances of the data, write con-
crete test cases (both inputs and expected outputs), write a
code skeleton that traverses the input structurally (but does
no problem-specific computation), then complete the skele-
ton with problem-specific code. Each step typically counts in
grading: functions that produce correct answers but whose
code structure deviates from the shape of the input data,
for example, lose significant points (in Soloway’s terms [10],
htdp requires code to have an explanation). htdp takes
students through this same core method multiple times on
increasingly rich data structures: atomic values, structures,
nested structures, lists, and (in most college-level courses
for CS majors) trees. Later parts cover top-down design
and problems requiring more than structural recursion.

htdp teaches a limited set of language constructs: func-
tion definition, function invocation, conditionals, user-defined
structures, lists (built-in), and perhaps naming intermediate
computations. Roughly 5 weeks into a college-level CS1 for
majors, students learn higher-order functions (such as fil-

ter and map) that implement common iteration patterns
over lists, taking a function over individual list elements as
input. In contrast to most non-functional CS1 courses, stu-
dents do not learn standard for/while loops, arrays, or I/O;
assignment operators, if covered at all, come towards the end
of the course, and then only for use in contexts that require
memory across calls to the same function.
htdp’s emphasis on a structured recipe for design makes

it a particularly interesting context in which to study plan

composition. Two aspects of this recipe—writing tests first
and writing code against skeletons that traverse data—are
particularly relevant. The testing emphasis means that stu-
dents should have thought out (and written down!) the space
of program inputs before writing even a single line of code.
A good set of test cases would capture many common trou-
blespots (such as the possibility of an empty list of inputs).
The emphasis on skeletons that match the shape of data
(identical to the Interpreter pattern in Object-Oriented de-
sign [3]) prescribes a default plan. As such, these skele-
tons are schemas in Soloway’s sense, but aligned to data
rather than control. htdp seeks to have students master this
bottom-up approach before tackling problems that require
top-down planning. As a result, problems (like Rainfall)
that require at least some top-down planning are fascinat-
ing testbeds for htdp.

4. PLAN COMPOSITIONS
Rainfall requires students to compose code implementing

multiple tasks. Our version (in Section 2) requires six tasks:

• Sentinel: Ignore inputs after the sentinel value

• Negative: Ignore negative inputs

• Sum: Total the non-negative inputs

• Count: Count the non-negative inputs

• DivZero: Guard against division by zero

• Average: Average the non-negative inputs

Our version omits I/O tasks common to earlier formaliza-
tions of Rainfall (as our students had not studied it). Of
course, this omission changes the problem and some of its
standard plan-composition nuances (such as where a student
should re-query a user for an invalid input). Although Si-
mon [9] questions whether such changes alter the problem
too much, we believe the fundamental questions about plan
composition remain unchanged.

Conceptually, these tasks can be executed and combined
in various ways. Figure 1 shows three (of many) examples:

• “Single Loop” (left) iteratively consumes inputs, incre-
ments sum and count on each non-negative input, then
checks for division by zero and computes the average
upon reaching the sentinel.

• “Clean First” (middle) iteratively adds non-negative
inputs to a data structure until the sentinel is reached.
It then counts and sums the cleaned data, checks for
division by zero, and computes the average.

• “Clean Multiple”(right) traverses the input twice, once
to count non-negative inputs and once to sum them.
Each traversal terminates at the sentinel. It then checks
for division by zero and computes the average.

The data structures that students know affect which op-
tions are feasible for them. A student who has learned
no data structures (an apparent constraint in early plan-
composition papers) has only the “Single Loop” option, as
the other two require building intermediate data structures.
A student who has learned only arrays could implement one
of“Clean First”or“Clean Multiple”, but probably would not
because a typical array declaration expects the programmer
to provide a size, which is unknown (the technique of cre-
ating a larger-than-needed array is not typically covered in

** SINGLE LOOP **

repeat until find sentinel {

if next input is non-negative

increment count

add it to the running sum

}

if count is at least 1

compute the average as sum/count

else report ‘‘no data’’

** CLEAN FIRST **

repeat until find sentinel {

if next input is non-negative

add to set of clean data

}

if at least one clean datum

count the clean data

sum the clean data

compute average as sum/count

else report ‘‘no data’’

** CLEAN MULTIPLE **

repeat until find sentinel {

if next input is non-negative

increment count

}

repeat until find sentinel {

if next input is non-negative

add it to the running sum

}

if count is at least 1

compute average as sum/count

else report ‘‘no data’’

Figure 1: Three high-level structures for Rainfall. We present these in imperative pseudocode for the benefit
of readers who are less familiar with functional programming.

CS1). A student who has worked with lists, however, has all
three options readily at her disposal.

Going into this study, we hypothesized that many stu-
dents trained in list-based functional programming would
use a high-level structure that traversed the inputs more
than once. htdp drills students on the idea of ”one task per
function”, emphasizing correctness over performance; this
might dispose students to one of the multi-traversal plans.

5. METHODOLOGY

5.1 Data Collection
We collected data in the Fall of 2013. We contacted col-

leagues teaching htdp-based CS1 courses at two institu-
tions, then mentioned the study on a mailing list for users
of htdp. Three additional faculty (two university, one high
school) offered to participate.1

All sites used the problem wording given in Section 2.
The logistics of assigning the problem differed across the
courses: some included the problem on exams, others used
supervised lab time, and others used out-of-class time (but
still required the assignment). Table 1 summarizes the na-
ture of the courses, sample sizes, and the conditions under
which students completed the problem in each course.

The solutions were passed along to the author either elec-
tronically or on paper via postal mail, as appropriate. Solu-
tions were stripped of identifying information before being
supplied to the author. Resource constraints led us to code
only a subset of the solutions from some courses. We coded
a higher percentage of the T3Non samples since their stu-
dents were both non-majors and had the least experience
with htdp. We coded all HS and T1Acc samples since their
populations were smaller. We used the sample command in
R (ver 2.15.2) to randomly choose which samples to code.
In hindsight, this method did not guarantee that each sam-
ple was representative within the course. The author did
all of the coding, so there was no need to assess inter-coder
reliability. All statistical analysis was done in R (ver 3.0.3).

5.2 Coding Composition Structures
We coded composition structures by reducing each stu-

dent’s program to a regular-expression-like summary. We
used a single-letter token for each of the six tasks (S for sum,

1None of the data were collected in the author’s own school.
The author is, however, a long-time htdp instructor.

T for sentinel, etc), combined with operators indicating in-
terleaved (&), parallel (|), sequential (;), or guarded (→)
composition. As examples, the following two codes capture
the “Clean First”and“Single Loop”programs from Figure 1:

Clean First: T&N ; D -> (S|C); A

Single Loop: (T & N & S & C) ; D -> A

These expressions capture the structural essence of each
solution. They do not capture details such as how many
functions students wrote, whether sequential tasks were in
the same or different functions, or whether students used
higher-order functions. Additional coding captured some of
this information. For each task within each solution, we
recorded when the task was implemented (a) within the
main Rainfall function, (b) within a helper function, (c)
across multiple functions, or (d) missing entirely. We also
recorded whether the task was implemented using a built-in
operation or higher-order function (e.g., length or filter).

Some solutions were sufficiently mangled that we could
not construct meaningful summaries for them. In such cases,
our code either captured which tasks were represented at all,
or recorded “None” if no tasks were evident.

Overall, our dataset included 32 different high-level struc-
tures that included all six required tasks. For analysis, we
grouped these into six clusters, as discussed in Section 6.1.

5.3 Coding Task Errors
When a student implemented a task incorrectly, we used

separate codes to record the errors. Our error codes derive
(with minimal changes) from Ebrahimi’s [1] Rainfall codes,
which in turn built on Ostrand and Weyuker’s error-coding
system [8]. An error code is a sequence of 2 or 3 letters: a
category of difference, a component of difference, and (op-
tionally) the extent of difference (which defaulted to Full if
omitted). Each piece had the following options (normal-face
items are from Ebrahimi; italics mark our additions):

Categories of Difference: Missing (X), Misplaced (P),
Malformed (F), Spurious (S), Inconsistent with Tests (I)

Component of Difference: Initialize (I), Base Case (B),
Update (U), Guard (G), Input (P), Header (H)

Extent of Difference [optional]: Partial (P), Full (F)

Thus, an error code of F-B means “malformed base case”
(which might arise if the base case of a recursive function

Label Course Type School Type Samples # Coded Conditions Language
T2 CS1 2nd Tier 224 63 Exam, 20-30 mins, 10 weeks in Racket
T1 CS1 1st Tier 154 61 Home, no limit, 13 weeks in Racket, OCaml
HS CS1 High School 7 7 Lab, 20 min, 18 weeks in Racket
T3Non Non-majors Intro 3rd Tier 65 43 Lab, 10 mins, 10 weeks in Racket
T1Acc Accelerated CS1 1st Tier 44 44 Home, no limit, 13 weeks in Racket, Pyret

Table 1: Summary of participating courses (all in the USA). “Tier” in the School Type column reflects
competitiveness of admission (lower numbers are more competitive); this approximates general academic
ability. The two 1st-Tier courses are from the same university, with T1Acc being an accelerated course that
students tested into after a month in T1 (most in T1Acc had prior programming experience from high-school).
For the two populations that worked at home, nearly all students self-reported spending no more than 30
minutes on the problem.)

did the wrong test or had a serious syntax error), while
X-G-P means “missing guard partially” (which might arise
if a student guarded against division-by-zero on only some
control-flow paths through a program).2

Three of Ebrahimi’s original components of difference—
input, output, and loop—can not arise in our programs. We
folded his “syntax concept” errors into “malformed”, as both
manifest similarly in Racket.

Nuances in our data required options (italicized) beyond
Ebrahimi’s. Inconsistent with Tests applies when a student’s
test case expected a different result than his program pro-
duced. Base Case captures errors in setting up the base case
for a recursive function; if the base case has the right guard
but the wrong return value, we use the (existing) Initialize
code. Header captures problems in the name or parameter
list in a function definition. Input captures problems in the
actual parameters passed to functions (such as a task be-
ing correct relative to its formal parameter, but receiving an
incorrect actual parameter). Extent of difference captures
cases in which a task was implemented correctly on some
control-flow paths but not others (e.g., forgetting to check
for division-by-zero after cleaning negatives from the input).

In contrast to earlier studies, we recorded errors at the
level of individual tasks (Sum, Average, etc), rather than
for the entire program. This granularity seems important:
students might make some errors (such as forgetting guards)
more frequently in some tasks. In functional languages,
where students might write separate functions for individual
tasks, per-task coding helps cluster errors that occurred in
the same function. The downside is that the same source-
code error may affect (and thus count towards) multiple
tasks, thus inflating sums of errors across tasks.

6. DATA ANALYSIS
We first analyze high-level program structure (method-

ology from Section 5.2), which reflects the essence of plan
composition. We then explore low-level errors within those
structures (methodology from Section 5.3). Finally, we con-
trast our results to those of prior Rainfall studies as best as
we can around our subtle differences in methodology.

6.1 High-Level Composition Structure
Table 2 summarizes the high-level structures that stu-

dents used, broken out by course. We have six clusters of

2The full coding manual is available at
www.cs.wpi.edu/~kfisler/Pubs/icer14-rainfall/.

T2 T1 HS T3Non T1Acc total
Single Loop 1 23 0 1 13 38
Clean First 40 25 1 1 20 87
Clean Multiple 12 13 3 15 9 43
Clean After 1 0 1 1 0 3
No Cleaning 1 0 1 5 0 7
Unclear 8 0 0 19 2 29

Table 2: Number of students implementing each
high-level structure within each course.

high-level structure: the three from Figure 1 (“Single Loop”,
“Clean First”, and“Clean Multiple”), “Clean After”(attempt
to adjust the results of sum and count to handle negative
and sentinel), “No Cleaning” (omitted negative and sentinel,
but included sum/count/average), and “Unclear” (generally
mangled code with no clear structure).

Two observations stand out from this table: the distribu-
tion of solutions across different high-level structures, and
the low percentage but skewed distribution of students pro-
ducing “Unclear” solutions. We discuss each in turn.

Diverse Composition Structures.
Table 2 shows that the single-loop structure of traditional

for/while loop solutions was not dominant in our data.
This is partly due to course organization: neither T3Non
nor HS had covered recursive functions that accumulate an-
swers in parameters (an advanced topic in htdp, coming
after trees and higher-order functions); T2 started the topic
just before the exam that included Rainfall, but most sec-
tions were told not to use it on the exam. Even in courses
where students had either seen this material (T1) or learned
for/while loops in high-school (most students in T1Acc),
other structures are more common than “Single Loop”.

What drives students towards “Clean First” or “Clean
Multiple” instead of “Single Loop”? Spohrer and Soloway’s
model of plan composition in marcel [11] suggested that
novices start from an initial plan, refining it as needed to
add tasks and handle errors. If this theory holds, we should
consider how different initial plan choices might lead to dif-
ferent structures. For example, students might:

• Start with the overall problem (average), which most
students know is computed from the sum and length of
a list. Sum and length are common exercises in func-
tional courses: students could either augment their ex-
isting plans for these to also clean input (“Clean Mul-

tiple”) or clean data before using their existing plans
(“Clean First”).

• Start by asking which tasks higher-order functions could
capture succinctly. Sum, Count, and Negative are of-
ten used to illustrate higher-order functions. Students
could clean input (“Clean First”) to provide data to
their existing higher-order plans for these tasks.

• Start by traversing the inputs, expecting to process
each as they go (“Single Loop”).

We are not claiming that our students did follow these thought
processes (our data cannot indicate this). Rather, we are
claiming that these are initial plans that (a) are accessible
to our students and (b) have plausible paths to each of the
common structures.

The idea of built-in or higher-order functions as initial
plans warrants more discussion. Soloway described plans as
“template-like structures” for common problems [10]; higher-
order functions merely turn these templates into functions
that are parameterized over other computation. For ex-
ample, filter takes a list and a predicate over individual
list elements, returning the sublist of elements that satisfy
the predicate. The names of higher-order functions indicate
their effects on the input: a programmer who sees (filter

<Foo> numList) knows immediately that the result is a sub-
set of numList chosen by Foo. Conventional loops lack this
feature. Seeing for simply says that something will be tra-
versed, but nothing about what will happen during that
traversal. In this sense, higher-order functions may provide
more concise and targeted plans than conventional loops.
This echoes Miller’s proposal for looping “macros” whose
names align with functionality, which arose after studying
program plan composition through natural-language [6].

Students in T2, T1, and T1Acc had seen higher-order func-
tions prior to this study; all students had seen length (of
a list). The following table summarizes how many students
in each high-level structure category used higher-order or
built-in functions for each task. It shows that students with
“Clean First” solutions use these features heavily.

N Sum Count Neg Sentl
Single Loop 38 1 1 0 1
Clean First 87 72 83 24 3
Clean Multiple 43 4 2 2 3
Other 39 1 12 0 1

of students using built-in functions, by structure

Count was nearly always implemented with the length func-
tion (built-in) on lists (a few students used a higher-order
function called fold). Even in T3Non, which had a high rate
of “Unclear” structures, 11 students used length. Within
“Clean First”, all but two of the Sum cases used fold; all
but three of the Negative cases used filter. The “Single
Loop” entries came from one student who wrote all of Rain-
fall via a single use of fold.

Take Away: The overwhelming correlation between high-
level structure and using built-in and higher-order functions
in“Clean First”suggests that knowing these functions signif-
icantly influences how students structure Rainfall solutions.

Open Questions: Do students who know higher-order func-
tions use them as initial plans? Are looping constructs whose
names describe impacts on data more useful as initial plans
than those named more for control-flow?

Unclear Composition Structures.
Only 14% of students (31 out of 218) had “Unclear” com-

position structures. This includes 7 students with no rele-
vant code, and another 5 who had a function for average but
did not integrate it with the other tasks. Thus, only 5% of
students (12 of 218) had no evident plan for solving Rainfall.

All but one of the remaining 19 students (8% of total)
used the htdp design recipe to write Rainfall: they wrote
a recursive function with a single parameter (for the list),
and attempted to compute the average piecewise as they
encountered each element. These solutions had the following
structure, with some mix of the Sentinel, Negative, Sum, and
Count tasks intermingled in place of the ellipses:

(define (rainfall alon)

(cond [(empty? alon) 0]

[(cons? alon) ... (first alon)

... (rainfall (rest alon))]))

These students’ main failing lay in using the default htdp
list skeleton as their overall plan; this plan was not suit-
able for Rainfall. This is not an indictment of htdp per se:
these students may perform well on writing straightforward
traversals. In addition, the parts of htdp that address ac-
cumulating data and problem decomposition occur later in
the course, beyond what some of our participating courses
had covered. The distribution of “Unclear” solutions across
courses is therefore relevant.

Ten of the 18 students who naively followed htdp were in
course T3Non, which had three potentially-confounding vari-
ables: these students had been given only 10 minutes to work
on the problem, they had covered less material than those
in other courses, and they were non-majors. If a T3Non
student had tried the default and realized another approach
was needed, she would not have had time to implement it.
We therefore interpret the T3Non data as indicating stu-
dents initial plan choices (ala Spohrer and Soloway): that
many of the “Unclear” structure students at least ended up
in the htdp default suggests that htdp students are learning
techniques for getting started on programs.

Take Away: htdp students absorb techniques for writing
list traversals, but likely need later parts of the course to
handle situations when structural recursion does not apply.

Open Questions: What is the relationship between extent
of coverage of htdp and performance on Rainfall?

Which High-Level Structure is Preferable?.
Are certain high-level Rainfall structures preferable for

students coming out of CS1? “Single Loop” appears most
efficient (traversing the input only once and not building
intermediate data);3 “Clean First” separates the concerns
(tasks) of the problem, which simplifies maintenance (and
arguably human comprehension).

We informally polled long-standing htdp instructors for
their preference among “Clean First”, “Clean Multiple”, and
“Single Loop”. We gave them a canonical solution in each
structure (all written in Racket), and asked which they pre-
ferred and why. We got 8 responses, 3 from instructors who
had provided data for this study. Uniformly, they preferred

3The efficiency argument is not valid in light of long-
standing compilation techniques that interweave nested list
traversals (e.g., [13]), though belief in it persists.

either “Clean First” or “Clean Multiple” to “Single Loop”,
with justifications referring to separation of concerns, ease
of testing individual tasks, and overall cleanliness.4 Half
preferred “Single Loop” to “Clean Multiple” on grounds of
efficiency (with both behind “Clean First”).

Open Questions: What design principles (e.g., clean data
first, reduce traversals, etc) should students prioritize com-
ing out of CS1? Which principles should be reflected as plans
that students choose instinctively? Which should students
treat as optimizations to apply once programs are working?

6.2 What Errors Do Students Make?
Low-level programming errors occur both within imple-

mentations of specific tasks and in the glue that composes
them. Arguably, many student errors in previous plan-
composition studies have been in the glue: for example, stu-
dents might know how to increment a counter, but perform
the increment in the wrong location. In functional program-
ming, individual functions tend to align with individual or
a few thematically-related tasks. Some mistakes are also
harder to make in functional languages: when variables are
parameters to recursive functions, it is harder to miss up-
dating them. We might expect this isolation of task to lead
to fewer low-level implementation errors, both within and
across functions. This section explores low-level errors.

6.2.1 Error Rates Per Task
The most frequent error in our data, by far, was omitting

a task entirely. The percentage of students omitting each
task within each high-level structure category is as follows:

Sum Count Neg Sentl DivZ Avg
Single Loop 0 0 16 0 16 0
Clean First 0 1 18 3 36 0
Clean Mult 0 0 58 0 52 0
Clean After 0 0 100 0 33 0
No Cleaning 14 14 100 100 43 0
Unclear 24 66 97 41 59 38

% of students within category who omitted task

“No Cleaning” is defined by omitting both Negative and Sen-
tinel, so their 100% omission rate is not surprising. Students
with a clear structure rarely omitted Sum, Count, Sentinel,
or Average. Many omitted Negative and DivZero, though
these are rather different omissions: failure to include Nega-
tive means that students missed part of the overall problem
statement, whereas failure to include DivZero means that
students failed to consider a subset of possible inputs to the
problem. Different techniques are likely needed to mitigate
each problem, which raises another question:

Open Questions: Would asking students to provide test
cases as part of plan-composition studies help identify the
source of certain classes of errors?

The relative rates of omission of Negative and DivZero
across “Single Loop”, “Clean First”, and “Clean Multiple”
suggests that perhaps students in one of the first two cate-
gories are simply stronger programmers. This is plausible,
as we have already argued that “Single Loop” is an advanced
approach under htdp. Course-level data does not, however,
support this hypothesis: students in (the accelerated) T1Acc

4A couple of T1Acc students left apology-like comments in
their code for choosing “Single Loop” for efficiency reasons.

make significantly more errors of omission than their fellow
students in T1 on many cells of this table.

Setting aside missing tasks, we now explore the low-level
errors that students made within (at least partially) imple-
mented tasks. Our error-coding method (Section 5.3) has
30 possible error categories (setting aside the “partial” mod-
ifier), of which 21 appear in our data. For sake of space, here
we report in detail only on errors in solutions with a clear
high-level structure (N=187) that occurred in more than
5% (10) of the solutions across all tasks. The following ta-
ble lists the number of occurrences of each error code within
each task. Since the same error in source code could affect
multiple tasks, the total within each row may be larger than
the number of students who made the corresponding error.

Sum Count Neg Sentl DivZero Avg
X-G-P 0 0 1 0 33 0
X-B 12 6 2 6 0 0
F-U 7 5 4 6 1 3
F-G 2 2 11 5 1 0

Error count per task, clear structure only (N=187)

The 33 X-G-P (missing guard partial) DivZero errors re-
flect a student checking emptiness of the original input list
but forgetting this check after handling negatives and the
sentinel. Half of these cases were in “Clean First”; the other
half split between “Clean Multiple” and “Single Loop”.

Of the 26 X-B (missing base case) errors, 19 occur with
“Clean Multiple”. By definition, such solutions implement
multiple tasks in one function, so a missing base case might
affect more than one task. A total of 10 students made the
19 X-B errors within “Clean Multiple” solutions. On the one
hand, these errors are surprising within htdp, as students
who start from the list skeleton would automatically (and
instinctively) include the base case. However, the low rate of
this problem (under 2% of students) suggests that perhaps
the htdp list skeleton is doing its job.5

The F-G (malformed guard) errors in Negative often re-
flect treating 0 as negative (e.g., using < instead of ≤).

Overall, our data show fairly low error rates once students
have a clear high-level structure. Setting aside missing tasks
and solutions with “Unclear” structures, we found a total of
153 coded errors, some of which are over-counted (as dis-
cussed in Section 5.3). A total of 98 students had at least
one error (other than “missing”). Thus, our data set has be-
tween 98 and 153 unique error locations within 187 solutions
with clear high-level structures. An error rate below one per
solution is quite low relative to other Rainfall studies. In-
cluding missing tasks as errors yields 296 errors within clear
structures, for a maximum error rate of 1.58 per student.

Low-level error counts varied only slightly with high-level
structure. The following table summarizes the total number
of errors per student within the three major high-level struc-
tures. Each cell indicates the percentage of students with
the given structure (row) and error count (column). Some
errors are over-counted in “Clean Multiple”. Since X-G-P
errors in DivZero were the most common overall, the last
column reports the percentage of students who made that er-
ror. The differences between “Single Loop” and “Clean Mul-
tiple” are not significant, though they become so (p =.002)
without X-G-P. We do not compare significance of these

5We cannot compare data on this error to previous studies,
as no prior studies included the X-B code.

against “Clean Multiple” given its over-counting. This table
supports our claim that “Single Loop” solutions came from
stronger programmers.

0 errors 1 2 3-6 9 X-G-P
Single Loop 74 21 5 0 0 18
Clean First 66 22 7 6 0 18
Clean Multiple 46 23 13 15 2 21

% of students with each error count, by structure

Finally, our error codes distinguish within-task errors from
between-task errors: the latter correspond to mistakes in
composing functions for separate tasks. We find only 25
instances of between-task error codes (F-P, X-P, and P-P)
in the entire data set. Of these, 23 were malformed actual
parameters (F-P), 18 of which occurred in solutions with
“Unclear” structure. We had only 3 instances of between-
task composition errors in solutions with clear structure.

Take Away: htdp solutions with clear high-level structure
have low error rates and few composition errors.

Open Questions: Can htdp and top-down planning curric-
ula (such as Pattern-Oriented Instruction [7]) complement
one other to improve performance on Rainfall?

6.3 Comparison to Other Rainfall Studies
Two prior Rainfall studies had conditions that overlap our

own: Ebrahimi [1] included some functional programming,
while Simon [9] provided the input in a data structure rather
than require I/O. This section relates our findings to theirs,
as best we can within the limits of differing methodologies.

Comparison to Ebrahimi.
Ebrahimi [1] studied student performance on Rainfall in

four languages (C, FORTRAN, Pascal, and LISP). It is
tempting to compare our error rates to those of his LISP and
non-LISP students. Unfortunately, such comparison would
be imprecise at best. Although our error codes are derived
from his, our two-level methodology captures missing tasks
outside of error codes, while he captured them within. Un-
like Ebrahimi, we did not record low-level error codes for stu-
dents whose solutions had no relevant code. Both of these
undercount certain errors, while our per-task error-coding
method overcounts others. Although these differences pre-
vent direct comparison, differences in magnitude of our error
rates suggest that our students did better. The most fre-
quent errors among Ebrahimi’s 20 LISP students were miss-
ing if-guards (50%; includes DivZero), misplaced updates
(40%, includes computing average in loop and sum/count
outside of loop), malformed updates (40%), and spurious
output (40%, not relevant for our data). These rates are
noticeably higher than for any of our error codes.

Differing course styles also hinder meaningful comparison
of our data with Ebrahimi’s. His students were in a posi-
tion to write imperative LISP code: they had seen assign-
ment operators, I/O, and iteration, and had previously used
Pascal. They had been “encouraged” to use recursion and
functions for each task when writing Rainfall.6 We do not,
however, know whether students heeded these instructions.
Code written in functional languages is not necessarily“func-
tional” (e.g., it might use side-effects): this is an important
caveat for any study that crosses linguistic paradigms.

6Email communication with Ebrahimi, April 2014.

Comparison to Simon.
Simon [9] reported broad categories of mistakes and imple-

mentation choices across 149 students in a C#-based CS1.
Four of his categories do not apply to us: using a while loop,
using a for loop, initializing sum, and avoiding integer di-
vision.7 The rest reflect at least partial implementation of
specific tasks. In the following comparison, we report ranges
that cover best- and worst-case interpretations of Simon’s
grading in our context. Ideally, percentages should be low
in the first row and high in the others.

Simon Issue Simon % Our % range
No (pertinent) code 36 3 – 6
Loop terminated by sentinel 22 81 – 90
Days counted within loop 21 85 – 89
Negative values ignored 40 57
Guarded division for average 0 55 – 61

For “no (pertinent) code”, we report a range from students
with no discernible plan (low) to students with either no
plan or one marked as “Far Off” (high). For the remaining
rows, we report the range of students who included each task
at least partially (high) or did so within a clear high-level
structure (low; guarantees that a student had a recursive
function—a.k.a. loop—covering that task).

Our students are clearly performing better than Simon’s.
Given that he also avoided I/O, this comparison suggests
that that the difficulties with Rainfall go beyond I/O plans.
Our requirements on negative numbers were slightly differ-
ent (ours dropped them while his treated them as zero), but
this seems insignificant as both versions require checking
the sign of each input. Thus, we have to wonder whether
the style of programming taught in our respective versions
explains the large differences in performance. Additional
studies would be required to explore this further.

Comparison to a Java-based CS1.
One university instructor on the htdp listserv collected

data in his (non-htdp) Java-based CS1 course (which had
covered arrays, but not lists). He used our problem word-
ing, substituting“array of integers” for“list of numbers”. We
did not code his data (N=51) for low-level errors. Coding
for high-level structure showed 50 “Single Loop” solutions:
28 used for, 12 used while, and 8 nested a while directly
within a for. Only 1 student had two loops in sequence
(while to clean the data then for to compute the average);
only 2 students (including this one) used a second array.
This supports our claim that something about either func-
tional programming or htdp steers students towards non-
“Single Loop” solutions with auxiliary data structures.

7. DISCUSSION
In 2010, Mark Guzdial [5] challenged computing educa-

tion researchers to make progress on Rainfall, mentioning
htdp as worthy of studying. Inspired by Mark’s question,
this paper reports on student performance on Rainfall from
an htdp perspective. Our participants made fewer errors
than in prior Rainfall studies and used a diverse set of high-
level composition structures; one high-level structure cor-
related strongly with use of higher-order and built-in func-
tions. Our current hypothesis is that some combination of
7Except for OCaml, the languages used in this study all
return exact answers to division, regardless of input type.

using lightweight data structures (in our case, lists), avoid-
ing I/O, teaching data-oriented iterators, and emphasizing a
single, widely reusable design method (as in htdp) underlie
these results.

We are not attempting to launch another grenade in the
CS1 language-paradigm wars. The ideas in our hypothe-
sis, while hallmarks of functional programming, are hardly
unique to it: even Java 8 recently announced the addition
of lambda, which simplifies writing and using data-oriented
iterators. That said, traditional linguistic choices and con-
straints may well have made Rainfall harder than it needs to
be. If students internalize “traverse arrays with for loops”
and “only create an array if you know the size”, they in-
evitably end up having to interleave multiple tasks in one
loop to implement Rainfall. Code that interleaves concerns
is arguably harder to implement, harder to test, and ulti-
mately more error-prone than code which keeps them sepa-
rate. Ginat et al. [4] document novices’ difficulties interleav-
ing algorithmic plans (though we disagree with their prefer-
ence for interleaved solutions in CS1).

Whether students learn to separate concerns is a likely a
function of how we teach them to program. We suspect that
including I/O discourages novices from separating concerns,
especially when students are taught to think about program-
ming top-down. Getting input is usually the first step to be
executed in a computation. If Spohrer and Soloway’s initial-
plan model is correct, that input must occur first could well
bias students towards picking an input plan first, then adapt-
ing it to accommodate other tasks. In contrast, a bottom-up
approach that starts with a more behavioral task (such as
“find the sentinel”) should guide students to first write fo-
cused individual functions for other tasks. The influence of
I/O on plan selection remains an interesting open question.

This study leaves us thinking about the design principles
that students should learn from CS1. We see many students
taking CS1 to learn to write small scripts for use in other
subjects. They want to grab (noisy) data from the web or
write small apps that work on various devices with different
input mechanisms. For this environment, students arguably
should internalize principles such as “clean your data first”,
and “separate I/O from core processing”. The “Clean First”
students in this study landed in this space, but we don’t
know why. The time appears right to articulate the prin-
ciples, not just the basic concepts, that our students need,
and to reopen studies of planning and plan composition with
these principles in mind.

This study leaves us curious about which plans students
carry into new languages. We strongly suspect that our
same participants would produce solutions with very differ-
ent structures after learning conventional loops and I/O in
CS2 (in Java for most of our participants). New constructs
obviously should change how students work, but not at the
cost of using solid design principles.

Including students’ testing behavior also stands to con-
tribute significantly to plan-composition studies. Test cases
can reveal sources of errors: did a student misunderstand
the problem, overlook a possible input, or incorrectly imple-
ment a correct model of the problem? Prior studies corre-
lated Rainfall performance with language or code compre-
hension [1, 12]; this makes sense for control-flow errors (i.e.,
misplaced statements), but less for problem-comprehension
ones (i.e., handling division by zero). Testing is lightweight
and thus easy to require (as htdp does) in many functional

languages. Indeed, the vast majority of our participants
included test cases. We should study whether test cases
influence which tasks (and their nuances) students handle.

Going forward, we need data from htdp students that ex-
plores what drives them towards particular high-level struc-
tures. We are also extending our project to include other
classic CS1 benchmarks (e.g., McCracken). One could argue
that Rainfall is biased in favor of functional programming
because average has a well-known algorithm (divide sum
by count), and both sum and count are standard, heavily-
exercised problems in functional CS1 courses. Other clas-
sic problems whose algorithms are less evident should prove
useful in further understanding the impact of functional pro-
gramming and htdp on learning design in CS1.

Acknowledgements: Mark Guzdial encouraged this study
during a research visit in Fall 2013. The instructors who con-
tributed data made it happen on short notice. Shriram Kr-
ishnamurthi and Matthias Felleisen engaged in helpful dis-
cussion of the results. NSF funds supported this work.

8. REFERENCES
[1] A. Ebrahimi. Novice programmer errors: language

constructs and plan composition. International Journal of
Human-Computer Studies, 41:457–480, 1994.

[2] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi.
How to Design Programs. MIT Press, 2001.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[4] D. Ginat, E. Menashe, and A. Taya. Novice difficulties with
interleaved pattern composition. In International
Conference on Informatics in Schools: Situation,
Evolution, and Perspectives, ISSEP’13, pages 57–67, 2013.

[5] M. Guzdial. A challenge to computing education research:
Make measurable progress.
https://computinged.wordpress.com/2010/08/16/a-
challenge-to-computing-education-research-make-
measurable-progress/, Aug. 2010. Accessed April 18, 2014.

[6] L. A. Miller. Natural language programming: Styles,
strategies, and contrasts. IBM Systems Journal,
20(2):184–215, June 1981.

[7] O. Muller, B. Haberman, and D. Ginat. Pattern-oriented
instruction and its influence on problem decomposition and
solution construction. In Proceedings of ITiCSE, 2007.

[8] T. Ostrand and E. Weyuker. Collecting and categorizing
software error data in an industrial environment. Journal of
Science and Software, 4:289–300, 1984.

[9] Simon. Soloway’s Rainfall problem has become harder.
Learning and Teaching in Computing and Enginering,
pages 130–135, 2013.

[10] E. Soloway. Learning to program = learning to construct
mechanisms and explanations. Communications of the
ACM, 29(9):850–858, Sept. 1986.

[11] J. C. Spohrer and E. Soloway. Simulating student
programmers. In International Joint Conference on
Artificial Intelligence, pages 543–549, 1989.

[12] A. Venables, G. Tan, and R. Lister. A closer look at
tracing, explaining and code writing skills in the novice
programmer. In Computing Education Research Workshop
(ICER), pages 117–128, 2009.

[13] P. Wadler. Listlessness is better than laziness: Lazy
evaluation and garbage collection at compile-time. In ACM
Symposium on LISP and Functional Programming, pages
45–52, 1984.

