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Abstract. Many model-finding tools, such as Alloy, charge users with providing
bounds on the sizes of models. It would be preferable to automatically compute
sufficient upper-bounds whenever possible. The Bernays-Schönfinkel-Ramsey frag-
ment of first-order logic can relieve users of this burden in some cases: its sen-
tences are satisfiable iff they are satisfied in a finite model, whose size is com-
putable from the input problem.
Researchers have observed, however, that the class of sentences for which such
a theorem holds is richer in a many-sorted framework—which Alloy inhabits—
than in the one-sorted case. This paper studies this phenomenon in the general set-
ting of order-sorted logic supporting overloading and empty sorts. We establish a
syntactic condition generalizing the Bernays-Schönfinkel-Ramsey form that en-
sures the Finite Model Property. We give a linear-time algorithm for deciding this
condition and a polynomial-time algorithm for computing the bound on model
sizes. As a consequence, model-finding is a complete decision procedure for sen-
tences in this class. Our work has been incorporated into Margrave, a tool for
policy analysis, and applies in real-world situations.

1 Introduction

The undecidability of first-order logic poses a challenge to using Alloy for verifica-
tion: analysis performed under bounds may not be complete. While incompleteness is
unavoidable for some classes of formulas, there are also classes for which analysis is
complete under domains of finite size. Alloy asks users to specify domain-size bounds,
but does not help users determine whether their bounds suffice for completeness. Ide-
ally, tools such as Alloy would provide such feedback or, better still, compute sufficient
bounds automatically when possible.

Sufficient-bounds results are long-established for classical first-order logic. Alloy’s
logic, however, is different in ways that impact computing bounds. Alloy signatures
yield first-order logic with sorts: the class of many-sorted first-order logic formulas
with sufficient bounds properly includes that for the unsorted case. Existing results on
sufficient bounds for many-sorted logic, however, make assumptions that are not valid
for many Alloy specifications: Alloy allows sorts to be empty, and also allows sorts
to overlap. These features, which are critical for modeling realistic systems, require an
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extended theory of bounds-computation. This paper presents the theory and algorithms
for computing sufficient bounds for a substantial class of Alloy formulas.

We actively use our results within our Margrave tool (www.margrave-tool.org)
for analyzing policies (such as access-control, firewall, and routing policies). One of our
standard policy examples—from a deployed conference-paper manager—requires the
results in this paper. Margrave uses the presented algorithms to compute how many
papers are required for complete reasoning (typically a single-digit number). In other
examples, Margrave computes sufficient bounds on some sorts (even when others can-
not be bounded). This can help a user decide how to allocate the computational re-
sources of model finding. Margrave is built upon Kodkod [24], the backend model-
finder for the Alloy Analyzer. For Alloy users, we provide an implementation online
(sortedtermcount.appspot.com) that takes a formula σ in Alloy notation, checks
whether σ lies in our class of decidable formulas, and computes sufficient sizes for
whichever Alloy signatures we can bound.

The bulk of this paper presents our results and algorithms in mathematical detail.
For a more casual reader, Section 2 gives an intuitive view of our results, including the
nuances that make empty sorts and overlapping sorts more difficult to handle.

2 Overview of Results

The Bernays-Schönfinkel-Ramsey class, sometimes called “Effectively Propositional
Logic” (EPL), comprises the set of first-order sentences of the form

∃x1 . . .∃xn∀y1 . . .∀ym . ϕ

where ϕ is quantifier-free and has no function symbols. The satisfiability problem for
this class is decidable: Bernays and Schönfinkel [2] and Ramsey [22] showed that such
a sentence has a model if and only if it has a model of size bounded by n plus the
number of constants in ϕ. When such a finite model property holds, satisfiability-testing
reduces to exhaustive search for a model within bounded domains. Furthermore, the
search need only consider models whose elements are constants. In effect, satisfiability
for these formulas reduces to propositional satisfiability.

The EPL results assume that all variables quantify over the same domain. Alloy
uses a sorted first-order logic, in which values come from several domains (Alloy signa-
tures) and each variable is associated with a particular domain. Sorts provide additional
information that model finders and theorem provers can exploit in the search for mod-
els [12,14,16,19]. More strikingly, the class of sentences with the finite model property
is richer in a sorted framework [1, 8, 11]. The following simple example illustrates the
interplay between sorts and bounds for completeness. Consider the class of unsorted
sentences of the form

∀y1∃x∀y2 . ϕ.

Satisfiability is undecidable for this prefix class [3]. In contrast, this sorted verion

σ≡ ∀yA
1∃xB∀yA

2 . ϕ (1)

is better behaved. Suppose that ϕ contains constants, say nA constants of sort A and nB
of sort B, but no function symbols. If we were to postulate that sort A is a subsort of sort
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B, then if σ has any models at all then it has a model whose size at sort A is bounded by
nA and whose size at sort B is bounded by (2nA+nB). On the other hand, if our signature
declared that B were a subsort of A, then some σ would only have infinite models. In
considering subsort relationships, this example illustrates order-sorted logic, in which
there is a partial order on the sorts rather than an assumption that all sorts are disjoint.
We give a formal treatment of this example below, as Example 15.

Alloy’s use of order-sorted logic, as well as its allowance of empty sorts, demand
new methods for computing sufficient bounds. To illustrate why, we first consider a
standard approach to establishing the finite-model property. Let σ be a sentence in un-
sorted first-order logic.
1. By Skolemization, there is a universal sentence σsk equi-satisfiable with σ. The

language of σsk is richer than that of σ, since constants and function symbols have
been introduced on behalf of existential quantifiers of σ.

2. Any potential model M for σsk has a Skolem hull [4] consisting of the interpretation
in the model of the ground terms of the language. The set of ground terms is called
the Herbrand universe. The Skolem hull forms a submodel of M in which every
element is named by a term in the language.

3. A fundamental classical theorem is that the truth of universal sentences is preserved
under submodel. Thus, if the signature of σsk has only finitely many terms, that is,
if the Herbrand universe is finite, then σ has the finite-model property.

When the language has only a single sort, the only way to guarantee that the Herbrand
universe is finite is to have no function symbols (other than constants). In that set-
ting, the sentences whose Skolemization produces no function symbols comprise the
EPL class. The many-sorted setting is more lenient. Consider for example a sentence σ

whose Skolemization leads to a language with simply a constant a of sort A, a function
f of sort A→ B. Then the only ground terms that can be constructed are a and f (a)
(terms such as f ( f (a)) are not well-sorted). This suggests—correctly—that a richer
classes of finite-model results are available.

But there are technical obstacles to generalizing the above argument. In particular,
– When empty sorts are allowed, the Skolem form of σ is not equi-satisfiable with

σ. For example the sentence (∀yA.y = y)∨ (∃xB.x 6= x) is true in models where
the sort B is empty. Skolemization, with a new constant b of sort B, yields the
sentence (∀yA.y = y)∨ (b 6= b) which is is unsatisfiable. Section 5 addresses this
issue formally.

– When sorts are not assumed to be disjoint (the order-sorted setting), not every el-
ement in the Skolem hull of a model is named by a term. Indeed the Skolem hull
of M can be infinite even when a finite submodel of M does exist. Example 9 in
Section 5 illustrates this case.

Contributions This paper adapts the approaches in the standard argument to accommo-
date ordered sorts and empty sorts. In doing so, it enables automatic bounds computa-
tion for additional Alloy formulas through the following contributions:

– We identify (Definition 11) a syntactically-determined class of sentences extend-
ing EPL, comprising Order-Sorted Effectively Propositional Logic (OS-EPL), for
which the Finite Model Property holds (Theorem 10, Section 6).
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– We present a linear-time algorithm (Corollary 16) for membership in OS-EPL. We
present a cubic-time algorithm (Theorem 17) for computing an upper bound on the
size of models required for testing satisfiability. It is interesting to note that the
bound itself can be exponential in the size of the sentence (Section 7), even though
it can be computed in polynomial time.

We view identification of the OS-EPL class as a contribution to a taxonomy of
decidability classes in order-sorted logic. In the presence of possibly-empty sorts, sen-
tences do not always have equivalent prenex-normal forms, so we cannot attempt a
decidability classification in terms of quantifier prefix as in [3]. As Section 6 shows,
our decidability criterion is based entirely on the signature of the Skolemization of the
given formula. This signature can be viewed as a generalization of the idea of quantifier
prefix, as it implicitly records the pattern of nesting between universal and existential
quantification.

2.1 A Sample Application

The PLT Scheme application Continue [15] automates many conference-management
tasks. Margrave has been helpful in developing and analyzing Continue; here we hint
at some of the ways that the algorithms in this paper have improved some of these
analyses.

The access-control policy of a conference can be represented as a first-order theory,
over a language representing facts about the world and access-control decisions such as
permit and deny. A user will query the policy to verify or falsify properties of the sys-
tem; Margrave’s mode of interaction is to generate models, or “scenarios” for situations
being explored by the user.

For example, a certain policy rule might say “The conference administrator can
advance the conference out of the bidding phase if every reviewer has bid on some
paper.” This rule gives rise to the sentence

permit(s,advancePhase,conference)←− Admin(s)∧ (phase = Bidding)∧
∀uUser∃pPaper . bidOn(u, p)).

The set of such policy rules, together with assumed facts about the application domain,
comprise a background theory for analysis. Now suppose one wants to verify the prop-
erty: “The conference chair can modify user passwords.” It suffices to determine that
there are no models of the negation of the formula

∀rUser . permit(chair,modifyPassword,r)

together with the background theory. The question, of course, is determining an up-
per bound on the scope of the search. The fact that the formula being explored by the
user is purely existential is of little help by itself, since the entire policy theory is part
of the satisfiability query. Besides rules such as the permit rule quoted above, the lan-
guage also includes such function symbols as paperPhase : Paper→ PaperPhase and
decision : Paper→ Decision.
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In the absence of sensitivity to sorts this theory would not submit to a finite-model
discipline. But in fact, for the Continue theory and the associated query above Margrave
automatically computes sufficient bounds:

Counts for finitary, populated sorts:
Conference:7 PaperPhase:12 Object:14 ConferencePhase:10
Action:16 User:9 Resource:6 univ:59 Paper:6

Without the support of the finite-model algorithms of this paper the user would—à la
Alloy—have to instruct the tool to restrict attention to a finite search space that was
presumably arrived at in an ad-hoc manner.

3 Related Work

The decidability of the satisfiability problem for the ∃∀ class in pure logic is a classical
result of Bernays and Schönfinkel [2] in the absence of equality, extended by Ram-
sey [22] to allow equality. The problem is known to be EXPTIME-complete [17]. An
example of the usefulness of multiple sorts in pure logic is Feferman’s work [7] on
interpolation theorems. Goguen and Meseguer did seminal work [10] on order-sorted
algebra; order sorted predicate logic was first considered by Oberschelp [21].

Harrison was one of the first to observe that many-sortedness can not only yield
efficiencies in deduction but can also support new decidability results. In unpublished
notes [11] he presents some examples of this phenomenon, and suggests searching for
typed analogs of classical decidability classes, as we have done here.

Order-sorted signatures (without relation symbols) can be viewed as tree automata
[6,23], so the question of whether the set of closed terms is finite can be answered using
standard automata techniques. We believe that the algorithm in this paper for counting
terms is new.

Fontaine and Gribomont [8], working in “flat” many-sorted logic (i.e., without sub-
sorting) prove that if there are no functions having result sort A and σ is a universal
sentence then σ has a model if and only if it has a model in which the size of A is
bounded by the number of constants of sort A. This result is used to eliminate quanti-
fiers in certain verification conditions. This theorem has application even when not all
sorts are finite and can be used in a setting where some functions and predicates are
interpreted.

Claessen and Sorensson [5] have integrated a sort inference algorithm into the Para-
dox model-finder that deduces sort information for unsorted problems and, under cer-
tain conditions, can bound the size of domains for certain sorts and improve the perfor-
mance of the instantiation procedure. Order-sorting is not used, and there are restrictions
on the use of equality.

Momtahan [18] computes a refutationally-complete upper bound on the size of a
single sort (as a function of the user-provided bounds on the other sorts) for a fragment
of the Alloy kernel language. The conditions defining this fragment are not directly
comparable to ours, but in some respects constrain the sentences rather severely. For
example existential quantification in the scope of more than one universal quantifier is
usually not allowed.
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Abadi et al. [1] identify, as we do, a decidable fragment of sorted logic that is decid-
able by virtue of having a finite Herbrand universe. Although they target Alloy in their
examples they work in a many-sorted logic without subsorts or empty sorts; their con-
dition for decidability is the existence of a “stratification” of the function vocabulary;
they do not provide algorithms for checking the stratification condition or computing
size bounds on the models.

Ge and de Moura [9] present a powerful method for deciding satisfiability modulo
theories with an instantiation-based theorem prover. Given a universal (Skolemized)
sentence σ they construct a system of set constraints whose least solution constitutes
a set of ground terms sufficient for instantiation; satisfiability is thus decidable for the
set of sentences for which this solution-set is finite (in the many-sorted setting this
subsumes the Abadi et al. class). They do not treat empty sorts nor subsorting. They
can treat certain sentences that fall outside our OS-EPL class; detection of whether a
given sentence falls into their decidable class seems to require solving the associated
set-constraints, as compared to our linear-time algorithm. Generally speaking they do
detailed fine-grained analysis of individual sentences; we have focused on an easily
recognized class of sentences.

The problem of efficiently deciding satisfiability in the EPL class is an active area
of research. Our work is complementary to these efforts in that it identifies an extended
class of sentences to which contemporary techniques can hopefully be applied.

A preliminary version of this work was presented at the workshop on Synthesis,
Verification, and Analysis of Rich Models (SVARM), July 20-21, 2010.

4 Background: Order-Sorted Predicate Logic and Term Models

We begin by formalizing several foundational concepts that underlie the high-level ar-
gument in points 1–3 of Section 2. Naturally, we define signatures and models for order-
sorted first-order logic. Finite-model properties derive from arguments that every model
of a sentence has a truth-preserving submodel with only finitely-many elements. Two
concepts are key to such an argument: homomorphisms between models (and hence
submodels), and a term model, which is a particular model over the ground-terms of
a sentence. Establishing that the term model is a submodel (under homomorphism) of
every model of a sentence is essential to proving completeness under finite bounds; a
theorem in this section captures this requirement.

The definitions and results in this section are either directly from Goguen and
Meseguer’s work [10] or they are the obvious extensions required to handle relations as
well as functions.

Notation We use 〈〉 for the empty sequence. If (S,≤) is an ordering we extend ≤ to
words in S∗ and then to products, pointwise.

Signatures An order-sorted signature is a triple L = (S,≤,Σ) where (S,≤) is a finite
poset of sorts and Σ is an indexed family of symbols, the vocabulary, comprising

– {Σw | w ∈ S∗}, an S∗-sorted family of relation symbols, and
– {Σw,A | w ∈ S∗ ,A ∈ S}, an (S∗×S)-sorted family of function symbols.
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We assume that the Σw and Σw,A are pairwise disjoint.
We stress that an order-sorted signature is not the same as an Alloy signature. Such

a signature denotes a language of discourse: available sorts, functions, etc. along with
an ordering on the sorts. In this way, an Alloy signature is a sort or a predicate within
an overall order-sorted signature.

Formalizing relations and functions through words—rather than through tuples of
sorts—simplifies certain definitions and eases capturing overloaded function symbols
(as [10] does). Our work assumes function symbols are not overloaded (through the
disjointness condition on the Σw,A); this is consistent with Alloy. Most of the results of
the paper generalize to handle overloading, including our finite model theorem (Theo-
rem 14). The one exception is our term-counting algorithm (Theorem 17), which relies
on the lack of overloading to compute precise bounds; with overloading, our algorithm
only promises upper bounds on the sort-sizes.

When R ∈ Σw we say that w is the arity of R. When f ∈ Σw,A we say that w is the
arity of f and A is the result sort of f . If L= (S,≤,Σ) and L′ = (S,≤,Σ′) are such that
for each w and A, Σw ⊆ Σ′w and Σw,A ⊆ Σ′w,A we say that L′ is an expansion of L, and
that L is a reduct of L′.

Following standard usage, a function symbol a ∈ Σ〈〉,A, taking no arguments, is re-
ferred to as a “constant” of sort A, and in concrete syntax we write simply a instead of
a().

The connected components of an ordering (S,≤) are the equivalence classes for the
equivalence relation generated by ≤. A signature L= (S,≤,Σ) is coherent if each pair
of sorts in the same connected component has an upper bound. Henceforth we assume
that our signatures are coherent. See [10] for an extended discussion of the importance
of coherence. Note: in [10] the notion of coherence also requires that signatures be
regular, a technical condition that is trivially satisfied in the absence of overloading.

The set of formulas is defined inductively by closing the set of atomic formulas
under the propositional operators ∧, ∨, and ¬ and the quantifiers ∃ and ∀. We will
indicate quantification over a sorted variable x ∈ XA by ∃xA or ∀xA (where XA is the set
of variables of sort A). The notions of free and bound variable are standard; let FV (ϕ)
denote the set of free variables of formula ϕ. A sentence is a formula with no free
variable occurrences.

Models Fix a signature L= (S,≤,Σ). An L-model M comprises

– an S-sorted family {MA | A ∈ S} of sets, the universe of M, such that
A≤ A′ implies MA ⊆MA′ ,

– for each R ∈ Σw a relation RMw ⊆Mw
– for each f ∈ Σw,A a function fMw,A : Mw→MA

As described in the introduction, the first step in investigating the finite model property
for a sentence is Skolemization, the process of eliminating existential quantifiers in
favor of function symbols. As a consequence we need to be attentive to the ways that the
language over which our models are defined can shift. If M is a model for L= (S,≤,Σ)
and L′ is an expansion of L then an expansion of M to L′ is a model of L′ with the
same universe as M which agrees with M on the symbols in Σ.
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An environment η over a model M is an S-indexed family of finite functions
{ηA : XA→MA | A ∈ S} such that ηA = (ηA′)�XA (the restriction to XA) whenever A ≤
A′. An environment η can be extended to terms in the usual way. When M is a model,
ϕ a formula, and η an environment such that FV (ϕ)⊆ dom(η) the relation M |=η ϕ is
defined by the usual induction.

Homomorphism A homomorphism h : M → N between models M and N is an S-
sorted family of functions {hA : MA→NA | A ∈ S} satisfying the following conditions
(suppressing sort information for readability).

A≤ A′ implies hA = (hA′) �MA

h( fM(a1, . . . ,an)) = fN(h(a1), . . . ,h(an)), and

RM(h(a1, . . . ,an)) implies RN(h(a1), . . . ,h(an))

The Term Model When the set of relation symbols in L is empty then the set of ground
terms forms the universe of a model for L, the term algebra [10]. We may view this as
a model for an arbitrary order-sorted signature, as follows.

Fix L = (S,≤,Σ). The family {TL
A | A ∈ S} of ground terms over L is the ⊆-least

family such that (i) TL
A ⊆ TL

A′ whenever A ≤ A′ and (ii) if f ∈ Σw,A with w = A1 . . .An

and for each i, ti ∈ TL
Ai

then f (t1, . . . , tn) ∈ TL
A . The ground terms determine a model

TL of L, the term model, by taking the interpretation of each f ∈ Σ〈A1...An〉,A to be the
function taking each tuple (t1, . . . , tn) ∈ (TL

A1
× ·· ·×TL

An
) to the term f (t1, . . . , tn), and

taking the interpretation of each relation symbol to be the empty relation.

Theorem 1. Suppose L= (S,≤,Σ) is a signature such that Σ has no relation symbols.
Then for any model M of L there is a unique homomorphism from TL to M (i.e., TL is
initial).

Proof. Initiality of TL in the category of algebras was shown by Goguen and Meseguer
[10]. Now, given an L-model M, we let M′ be the reduct of M to the language L′

obtained by removing the relation symbols. So M′ is a L′-algebra so that Goguen and
Meseguer’s theorem applies. But the unique algebra homomorphism from TL to M′ is
itself a L-homomorphism from TL to M, simply because each TL-relation is empty,
and the result follows. ///

5 Skolemization

A formula is in negation-normal form if the negation sign is applied only to atomic
formulas. As for standard one-sorted logic, DeMorgan’s laws for pushing negations
below ∧ and ∨, and the equivalences between ¬∃xAα and ∀xA¬α all hold, even in
the presence of empty sorts. So every formula is logically equivalent to a formula in
negation normal form. But the fact that models can have empty sorts changes the rules
for how quantifiers may be moved within a formula. In particular the passage between
((∃xAα)∨β) and ∃xA(α∨β) (when x is not free in β) does not hold if A can be empty
(and of course the dual equivalence involving ∀ fails as well) and so we cannot in
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general percolate quantifiers to the front of a formula. So we cannot restrict our attention
to formulas in prenex normal form, but we will always pass to negation-normal form.

Definition 2 (Skolemization). Let ϕ be a negation-normal form formula over signature
L= (S,≤,Σ); the result of a Skolemization-step of ϕ is any formula ϕ′ that can be ob-
tained as follows. If ∃xA.ψ(xA,xA1

1 , . . . ,xAn
n ) is a subformula occurrence of ϕ that is not in

the scope of an existential quantifier, let f be a function symbol not in Σ, and let ϕ′ be the
result of replacing the occurrence of ∃xA.ψ(x,x1, . . . ,xn) by ψ( f (x1, . . . ,xn),x1, . . . ,xn).
Note that ϕ′ is a formula in an expanded signature obtained by adding f to Σ〈A1,...,An〉,A.

A Skolemization of a formula ϕ is a sentence with no existential quantifiers, obtained
from ϕ by a sequence of such steps.

The following lemma is straightforward.

Lemma 3. For any σ we have σsk |= σ.

In contrast to the classical case we do not have the fact that “σ satisfiable implies
σsk satisfiable.” That holds in one-sorted logic because we can always expand a model
of σ to properly interpret the Skolem functions and make σsk true, but this expansion is
not always possible in the presence of empty sorts.

Example 4. Let σ be (∃xA . (x= x)∨∃yB . (y= y) )∧(∀zA . (z 6= z)). Then σ is satisfiable
but its Skolemization ((a = a)∨ (b = b))∧ (∀zA . (z 6= z)) is not.

The phenomenon in Example 4 is essentially the only thing that can go wrong:
models can be expanded to interpret Skolem functions if we do not existentially quantify
over empty sorts. This points the way to recovering a weak version of the classical equi-
satisfiability result which will be good enough for our present purposes.

Lemma 5. If σ is satisfiable then there exists a formula σ⊥ such that (i) σ⊥ |= σ and
(ii) σ⊥sk is satisfiable.

Proof. Suppose M |= σ. The sentence σ⊥ is obtained by replacing ∃xA . α by ⊥ pre-
cisely when MA = /0. It is straightforward to see that σ⊥ |= σ. Since in σ⊥ there is no
existential quantification over sorts empty in M one can show that there is an expansion
M∗ of M to the signature of σ⊥sk such that M∗ |= σ⊥sk. ///

6 A Finite Model Theorem for Order-Sorted Logic

Model M is a submodel of model N if (i) for each sort A, MA⊆NA and (ii) each fM and
RM are obtained as the restrictions of fN and RN to M. Note that we use “submodel”
in this strong sense rather than just requiring each RM to be a subset of RN (as is done
by some authors).

If X = {XA | A ∈ S} is a family of sets with XA ⊆MA for each A ∈ S then we say
that X is closed under a function g : MA1×·· ·×MAn →MA if whenever (a1, . . . ,an) ∈
XA1×·· ·×XAn we have g(a1, . . . ,an)∈ XA. Note that this is a stronger claim than saying
that the single set

⋃
X is closed under g.
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Lemma 6. Let h : P→M be a homomorphism between models of L= (S,≤,Σ). There
is a unique submodel of M with universe {hA(PA) | A ∈ S}.

Proof. It is easy to check that the family {hA(PA) | A ∈ S} is closed under the inter-
pretations in M of the function symbols in Σ. So if we define the interpretations of the
relation symbols in Σ to be the restriction of the interpretations in M the result is a
submodel. Since there is no choice in the interpretations of the symbols in Σ once the
universe {hA(PA) | A ∈ S} is determined, uniqueness follows. ///

Next we establish the fundamental fact about preservation of universal sentences
under submodel.

Theorem 7. Let σ be a sentence that is existential-free and in negation-normal form
and let M′ be a submodel of M. If M |= σ then M′ |= σ.

The proof is a straightforward induction.

Definition 8 (The kernel of a model). Let M be a model for the signature L = (S,≤
,Σ). Let h be the unique homomorphism from TL to M (c.f. Theorem 1). The image of
h is a submodel of M by Lemma 6; this is the kernel of M.

The crucially important fact for us is that for the kernel K of M we have, for each
sort A, the cardinality of KA is bounded by the cardinality of TL

A , simply because KA is
the image of TL

A under h.

The kernel and the Skolem hull Recall the classical treatment of Skolemization (see
e.g., [4]): given a model M, let M∗ be a model interpreting the Skolem functions that
satisfies the Skolem theory (the sentences saying that the Skolem functions witness the
truth of the associated existential formula). Then given a subset X of the universe of
M, the Skolem hull HM(X) is the smallest subset of the universe containing X and
closed under the functions and constants of the enriched language; this determines an
elementary submodel HM(X) of M∗. In particular HM( /0) can be viewed as a “mini-
mal” submodel of M.

But in the order-sorted setting, the kernel of a model is not in general the same
as the Skolem hull. The latter notion, although perfectly sensible in order-sorted logic,
does not play the same role of “minimal” submodel as it does in the one-sorted setting.
Indeed it is possible for the kernel of a model to be finite while the Skolem hull is
infinite.

Example 9. Consider L= ({A,B}, /0,Σ) with a∈ Σ〈〉,A and f ∈ ΣB,B the only vocabulary
symbols. Let M have MA = {b0 = aM}, MB = {b0,b1,b2, . . .}, and fM map bi to bi+1.
Then the Skolem hull H( /0) of M is M itself. Yet the kernel K of M is the model of size
1 with KA = {b0}, KB = /0, fK = /0.

Here we present our main theorem.

Theorem 10. Let σ be an L-sentence whose Skolemization σsk has signature L∗. Then
σ is satisfiable if and only if σ has a model H such that for each sort A, the cardinality
of HA is no greater than the cardinality of TL∗

A .
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Proof. For the non-trivial direction, suppose σ is satisfiable. By Lemma 5 there is an
approximation σ⊥ of σ such that σ⊥sk is satisfiable. Let L∗∗ be the signature for σ⊥sk;
note that L∗∗ is a reduct of L∗ and the sentence (σ⊥)sk is existential-free.

Let M be a model of (σ⊥)sk, and let H be the kernel of M. Since (σ⊥)sk is existential-
free, H |= (σ⊥)sk. Since H is a kernel we have that for each sort A, the cardinality of
HA is no greater than the cardinality of TL∗∗

A , and thus no greater than the cardinality of
TL∗

A . Since (σ⊥)sk |= σ⊥ and σ⊥ |= σ, the model H is the desired model of σ. ///

Finally we can define precisely the key notion of the paper.

Definition 11. Order-Sorted Effectively Propositional Logic (OS-EPL) is the class of
sentences σ such that the signature of the Skolemization of σ has a finite term model.

The next section shows how to decide whether a sentence is in OS-EPL and if so, to
compute the sizes of the sorts in the term model. Taken together with Theorem 10, this
establishes a decision procedure for satisfiability of OS-EPL sentences.

7 Algorithms

Let L= (S,≤,Σ) be a signature. We say that sort A is finitary in L if TL
A is finite.

Our membership algorithm reduces the problem of counting terms to one of ask-
ing whether a given context-free grammar yields only a finite number of strings; well-
known algorithms solve the latter problem. [13, 23]. Intuitively, the grammar captures
the ground terms that can be generated from the signature.

Definition 12. Given a signature L = (S,Σ,≤) with multiple sorts, we define a gram-
mar GL as follows. The set of nonterminals is S∪{A0}, where A0 is a fresh symbol
not in S, the set of terminals is

⋃
{Σw,S | (w,s) ∈ S∗×S}, and the set of productions

comprises:

A0→ A for each A ∈ S

B→ f A1 . . .An whenever f ∈ Σ〈A1...An〉,B

B→ A whenever A≤ B

A non-terminal X in a context-free grammar G is said to be useful if there exists a
derivation A0 ⇒∗ αXβ⇒∗ u where u is a string of terminals, otherwise X is useless.
If A is a useful non-terminal and u is a string of terminals we say that A generates u if
there is a derivation A =⇒∗ u.

Lemma 13. Let A be a sort of L and let u be a string of terminals over
⋃
{Σw.S |

(w,s) ∈ S∗×S}. Then u is a term in TL
A if and only if there is a derivation A⇒∗ u

in GL. A sort A is inhabited by a ground term if and only if A is useful in the grammar
GL. When A is useful as a sort in L(GL), the set TL

A is finite if and only if A generates
only finitely many terms in L(GL). In particular the set TL is finite if and only if L(GL)
is finite.

11



Proof. The first claim is easy to check: it holds essentially by the construction of GL.
The second claim follows from the first and the facts that the u in question are strings
of terminals of GL and we have A0⇒ A for each A ∈ S. ///

Theorem 14. There is an algorithm that, given an order-sorted signature L, deter-
mines (uniformly) for each sort A, whether TL

A is finite. The algorithm runs in time
linear in the total size of L.

Proof. By Lemma 13, TL
A is finite if and only if A generates only finitely many terms

in in L(GL). There is a well-known algorithm for testing whether a non-terminal in a
context-free grammar generates infinitely many terminal strings [13]. After eliminating
useless symbols from the grammar GL, form the graph whose nodes are the inhabited
sorts, with an edge from B to A if and only if there is a production in GL of the form
B→ α A β, that is, if and only if the set Σ〈A1...A...An〉,B is non-empty or if A≤ B. Then a
non-terminal A generates infinitely many terminal strings if and only if there is a path
from A to a cycle. Since the size of GL is linear in the size of L, the overall complexity
of our algorithm is linear in L. ///

Example 15. Return to Equation 1 from Section 2. Over the signature L with two sorts
A and B, with A≤ B, consider the sentence

∀yA
1∃xB∀yA

2 . ϕ (2)

where ϕ has no function symbols. After Skolemizing we have the signature with b ∈
Σ〈〉,B and f ∈ ΣA,B in addition to those constants in the original signature. The corre-
sponding grammar has productions A0 → A, A0 → B, B→ b, B→ f A and B→ A, in
addition to productions corresponding to the constants appearing in the original ϕ. The
resulting graph has edges from the node A0 to A and to B, and an edge from B to A (the
latter for two reasons, due to the grammar production B→ f A and due to the produc-
tion B→ A). This graph is acyclic so we conclude that this class of sentences has the
finite model property.

On the other hand, if we were to postulate that B ≤ A (instead of A ≤ B) then we
cannot deduce the finite model property. Our grammar would have the production A→
B in addition to B→ A and the resulting graph would have a cycle.

Corollary 16. Membership in OS-EPL is decidable in linear time.

Proof. Let σ be given, over signature L. We can compute the skolemization σsk of σ

in linear time, and extract the signature L∗ of σsk. The size of this signature is clearly
linear in σ, so by Theorem 14, we can decide whether all sorts of L∗ are finitary in time
linear in σ. ///

Note that in the worst case, Σ may induce a number of terms exponential in its size.
Thus we would like to avoid actually generating the terms, and merely count them if
we can do so in polynomial time.

Theorem 17. There is an algorithm that, given a signature L, computes, in time cubic
in the size of L, the size of TL

A for each finitary sort A (returning “∞” for the non-finitary
sorts).
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Space does not permit a full presentation of the algorithm: see [20] for the details.
Intuitively, if a sort is finitary, its terms can be of height no greater than the number of
functions in Σ. So we construct a table containing the number of terms of each height of
each sort, starting with constants and then applying functions. The only complication is
that when counting the ways to create a new term of height h using function f , we need
to make certain that each has at least one subterm of height exactly h−1. The algorithm
is implemented using dynamic programming, and the cubic bound is straightforward to
establish.

Summarizing, we have the following sound and complete procedure for testing sat-
isfiability of OS-EPL sentences. Given sentence σ, compute its Skolemization σsk; let
L∗ be the signature of σsk. If the term model TL∗ is finite then we know that if σ is
satisfiable then σ has a model whose universe has cardinalities as given in Theorem 10.
Since these bounds are computable we can effectively decide satisfiability for such sen-
tences.

Remark 18. The results of the algorithm in Theorem 17 can be useful even if not all
sorts are finitary. Fontaine and Gribomont [8] have implemented an instantiation-based
algorithm that takes advantage of the information that certain sorts are guaranteed to
have finitely many ground terms. Their algorithm does not do a sophisticated test for
this condition, in fact it succeeds only if there are no non-constant terms in the sort in
question. Our algorithm here is simple yet will allow their methods to be applicable to
a wider class of sentences.

8 Future Work

This work suggests two major lines of further inquiry. The first is the exploration of
algorithms for working with OS-EPL sentences that are efficient in practice. A natural
approach is to leverage insights from existing tools for model-finding and theorem-
proving that are currently optimized for the traditional EPL class. The other, more the-
oretical, direction is to pursue a program of classifying fragments of order-sorted logic
according to decidability. Abadi et al. [1] suggest a taxonomy based on quantifier pre-
fix patterns but, as pointed out in the introduction, prenex-normal form is not available
when sorts are allowed to be empty. We propose that a combinatorial analysis of the
signature of Skolemizations of sentences is the proper generalization of the analysis of
classical quantifier prefix classes.
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