A Sample Proof Using English and Program Reductions
COMP 280, Spring 2000

This example demonstrates inductive proofs that involve a combination of English text and program manip-
ulation. Each case (base, inductive, and subcases thereof) in such a proof contains two steps:

1. Clearly state (in English) the expected result of running the program.
2. Use program reductions to derive an expression whose value matches the expected result.

The following sample proof that the length program correctly counts the number of items in a list illustrates
these steps. This same technique applies to all inductive proofs that involve a combination of reasoning in
English and reasoning with equations or reductions.

A list is either
- empty
- (cons E L) where E is an element and L is a list

:; length : list — number
:: returns the count of items in the list

(define (length a-lst)
(cond [(empty? a-lst) 0]
[else (+ 1 (length (rest a-lst)))]))

Prove that for all lists L, (length L) returns the number of items in the list.
Proof:

Base: Let L be empty. As the empty list contains no elements, we must prove that (length empty) returns
0 [note: this is the expected result].

(length empty)

(cond [(empty? empty) 0]
[else (+ 1 (length (rest empty)))])

Assumption: Let L1 be a list. Assume that length correctly counts the number of items in L1.
Inductive: We must prove that length correctly counts the number of items in (cons E L1). Since (cons

E L1) contains one more item than L7, we expect length to return one more than the number of items in
L1[note: this is the expected resull].

(length (cons E L1))

(cond [(empty? (cons E L1)) 0]
[else (+ 1 (length (rest (cons E L1))))])

(+ 1 (length (rest (cons F L1))))

(+ 1 (length L1))

By assumption, (length L1) returns the number of items in L1. (+ 1 (length L1)) therefore returns one
more than the number of items in L1. which matches our expected result.



