COMP 280 : Extra Credit Project
due: Friday, April 28, 2000

This extra credit project considers the value-flow analysis (and type checker) for Scheme programs that we
discussed in class during the exam week. There are two stages to the project. If you want extra credit, you
must complete at least the first stage (and have the code mostly working). You may earn additional extra
credit points for completing the second stage. All work on this project must be submitted by the last day
of classes.

Warning: This project is non-trivial. Don’t expect to start the night before and make enough headway to
earn any points. You will receive no points unless you have at least the entire first stage mostly working.

Honor Code Policy

The honor code policy for this project is similar to that for homeworks: you may discuss the project with
other students, but you must write the final programs on your own. However, there are two additional
requirements for the project:

1. You must clearly document who else you worked with on the project, and on what aspects (for example,
“X and I developed our data definitions for programs together”, or “Y helped me debug the following
error in rule R”). Attach this information to the front of your project writeup. If you did the project
entirely on your own, say so. Failure to mention who you worked with may result in no credit for the
project.

2. Since this is for extra credit, I may ask you to come in and explain parts of your solution to me. These
sessions will be individual, not with groups of students who worked together. Thus, make sure you
understand how your program works before turning it in. If ’'m not convinced that you understand
what you turned in, you may receive little or no credit for the project.

What to Turn In

You should turn in printouts of all programs, including test cases and descriptive comments describing the
rules in the program. You should turn in a clear description of the data representation that you use for
programs as well. Your work should be neat and readable. You should also turn in a description of who else
you worked with on the project (see the section on the honor code policy for this project).

Problem Definition

In this project, you will implement (in Prolog) the value-flow analysis that we discussed in class. This section
gives the data definition for programs and describes the relations that your program must generate. First,
the data definition:

A program is either

e 3 variable, or
o (let (z exp) body), where z is a variable, body is a program, and ezp is one of

— a constant (number or empty),
— (cons variable variable),

— (lambda variable program),



first variable),

rest variable),

—(
—(
— (variable variable) (function application),
— (4 variable variable), or

- (

optional) (if (= wvariable variable) program program),
where = operates on numbers only (not on lists).

Thus, example programs are

(let (a 3)
(let (b 4) (let (f (lambda z z))
(let (¢ (cons a b)) (let (2 3)
(let (d (first c)) (let y (f 2)
d)))) y)))

The value-flow graph for a program indicates how values flow between variables. In the first example, 3 flows
to a, 4 flows to b, (cons a b) flows to ¢, and a flows to d. In the second example, 3 flows to z, z flows to z
and z flows to y. Each “flows” statement represents an edge in the value-flow graph.

A value-flow solver computes the transitive closure of a value-flow graph. Thus, the result of the solver is
a mapping (also called an environment) from every variable in the input program to the values that the
variable may take on during program execution. For the first example, the solver would produce mapping

<a3 3)7 (bﬂ 4)5 <c7 (cons a b))’ <d5 3)'

For the second example, the solver would produce mapping

{f,(lambda z z)), (2, 3), (y, 3), {z, 3).

Stage 1

Implement a value-flow solver in Prolog. Your program should define a rule in_E(Var, Value), which returns
true if the value Value can flow to variable Var (in_E stands for “in environment”).

I suggest you proceed in the following steps:

1. Develop a Prolog representation for programs in the language defined earlier. I suggest you use lists as
your main structuring mechanism. You may wish to show me your representation before proceeding, so
you don’t lose time due to a poor representation. If you want me to look at your representation, bring
me a description of the representation and both example programs written in your representation.

2. Define a helper rule is_prog(Program), which is true of all representations of programs in the program
you wish to analyze. For example, if you wish to analyze the first example given earlier, the following
statements should all evaluate to true (though with the programs written in your Prolog representation
of programs).

e is_prog((let (a 3) (let (b 4) (let (c (cons a b)) (let (d (first c)) d))))).



e is_prog
® is_prog

e is_prog(d).

3. On paper, develop the implications that determine when a variable and value should satisfy in_E. For
example, in class we discussed the implication governing binding variables to numbers:

is_prog((let (a 3) Body)) — in_E(a, 3).

You should develop one implication for each condition under which a value flows to a variable. Use the
data definition for programs to guide which rules to develop. Each rule generally concerns one case of
the program data definition. If your rules are spanning multiple cases, you're likely headed down the
wrong track.

Do NOT try to use the Scheme code/implementation that we discussed in class to figure
out these rules. You will get horribly confused if you do this. The solver is far easier to implement
in Prolog than in Scheme. You should only consider the part of the lecture where we talked about the
implications defining where values flow in the program. As a guideline, my Prolog implementation of
this stage requires roughly 50 lines of actual code (including the is_prog rule, but not including blank
lines, comments, etc).

Note: This is the hardest part of this stage. Writing the Prolog program should be reasonably easy
once you figure out these rules.

4. Write and test the Prolog program for in_E. Your program does not need to do any error checking (i.e.,
it can assume that it always receives correct inputs).

Stage 2

Use the value-flow generator to implement a type-checker for our language of programs. There are two
subproblems to this stage. The first detects type errors. If you want a bit of a challenge, also try the second
subproblem which detects the source of type errors.

1. Implement a rule type_error(Var, Value, Exp) which returns true if the value Value yields a type error
for variable Var at expression Exp. For example, given the following program, type_error(y, 8, (first
y)) should return true.

(let (f (lambda z z))
(let (2 3)
(let y (f 2)
(let (a (first y))
a))))

2. (Challenge) Implement a rule type_error_source(Varl, Value, Var2) which returns true if the program
contains a type error for value Value of variable Varl, and Value originated at variable Var2. For the
above example, type_error_source(y, 3, z) should be true, but type_error_source(y, 8, x) should not.



