COMP 280 : Assignment 6 - Sample Solutions

1. There are n!/(k!(n — k)!) ways to pick a combination of k things from {1,2,...,n}. But some of these
combinations contain both 1 and 2. The combinations that contain both 1 and 2 contain 1 and 2, and
k — 2 other elements picked from {3,...,n}. So the number of combinations containing both 1 and
2 is equal to the number of ways to pick a combination of k¥ — 2 things from {3,...,n}. There are
(n—2)1/((k = 2)!(n — k)!) such ways. So there are a total of
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ways to pick a combination of k things from {1,2,...,n} without picking both 1 and 2.

2. If k is even, then there are n¥/? ways to pick the first k/2 letters of the palindrome. If k is odd, then
there are n(F=1)/2 ways to pick the first (k — 1)/2 letters, and n ways to pick the middle letter, for a
total of n(*+1)/2, So in all cases, the answer is n/*/21,

3. Take the flags in some order, and put them on the flagpoles one by one: for the first flag you will have
the choice between p possible positions (the p empty flagpoles), for the second flag you will have the
choice between p + 1 possible positions (the p — 1 empty flagpoles, or above or below the first flag on
the same flagpole), etc. .. In fact, each time you add a new flag, you will add another possible position
for the next flag to the current number of possible positions. So the total number of ways for f flags
to be put on p flagpoles is going to be p(p+ 1) ---(p+ f-1) =+ f-1!/(p—1)L
Another way to look at it is like this: represent the different flags on the different poles as p; < -+ <
pi < fj <+ < fo < piq1 < -+ < pp, meaning that flags f; and f; are on flagpole p;, in that
order, with maybe some other flags in between. Then adding another flag is equivalent to splitting one
interval into two, therefore adding one interval each time a new flag is added. Since there are initially
p intervals (you cannot add something on the left of p; ), you get again (p+ f —1)!/(p—1)! possibilities.

Dr. Fisler’s approach: Assume you have an ordering of the flags. Then you have to decide how to
distribute them across the flagpoles. This is C(f + p— 1, f) (this is a C2-style ball and urns problem).
How many orderings of the flags are there? f!. So, the final solution is fIC(f +p—1, f) (which, when
simplified, gives the same result again).

Another approach to Dr. Fisler’s approach (from a student paper): first, think of the flags as being
unlabeled (not distinct), and find all the ways they can be placed on the distinct flagpoles. This
amounts to placing f unlabeled balls in p labeled urns, so there are C(f + p — 1, f) ways to do this.
Now label the flags. Since there are f! possible ways to label the flags, the product rule tells us that
this will yield fIC(f +p— 1, f) ways to position the f flags on p flagpoles (then simplify. . .)

4. Given the constraints, all the strings have to be of the form 100X7;100X2100X35100X with four zeros
left to be placed anywhere where an X; is. So the problem is equivalent to counting the number
of four-element bags that can be constructed from the set A = {1,2,3,4}, where the elements of A
represent positions among the different X;. Then the result is (according to the book, formula (5.9)

page 265, and the table page 263):
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Since the number of zeros and ones was given, one could also count on its fingers, if one had enough
fingers. . .



5. Each path between n; and na goes through between zero (direct edge) and n — 2 (maximum number
of nodes left) nodes. Each path can be represented by the list of nodes, other than nqy and nas, it goes
through. So choosing a path that goes through p nodes is the same as picking a permutation of p nodes
among the n — 2 left ones. So there is P(n — 2, p) paths going through p intermediate nodes, and since
any path can have between zero and n — 2 nodes, the total number of possible paths is:
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6. For each cube, there is six possible front digits, so a total of 6* possible front sequences. For each
given front digit, there is four possible top digits, so for a given front sequence, there is 4* possible
top sequences. So a total number of 24* possible front-top pairs of sequences. Now a front-top pair of
sequences entirely determines an arrangement, since, knowing what the front and top digits of a cube
are, one can determine what the back and bottom digits are. So there are 24* lists of sequences.

But if you rotate all four cubes at the same time by 180 degrees along their vertical axis, the arrangement
is not changed (only the order in the list of sequences is). The same for a rotation along the horizontal
front-to-back axis. 180 degrees rotations along the horizontal left-to-right axis can be simulated by a
pair of the previous two types of rotations, but 90 degrees rotations cannot, since 180 degrees rotations
always flip back-front or top-bottom or left-right, but never back-top or left-front, etc... So for each
arrangement, there are 23 possible lists of sequences (two choices for each of the three degrees of rotation
- another way to see this is to just count on your fingers the number of possible lists of sequences for
a single arrangement for a single cube).

So the total number of arrangements is 24*/2% = 41472.



