COMP 280: Assignment 4, Sample Solutions

```
#1
    A boolsymL is either:
    - emptu
1. -(cons\ boolsym\ boosym L)
    An Answer is either:
    a boolean

    a boolsumL

   |#
   :: check-equiv-vars : formula formula vars \rightarrow Answer
   :: returns true iff the two formulas agree on their values for every
   :: combination of values on the variables in vars. We assume that
   ;; vars contains all variables appearing in either input formula.
   :: Returns a list of boolean symbols representing the counterexample
   ;; if the two formulas are not equivalent.
   (define (check-equiv-vars F1 F2 vars)
     (local ((define (check-equiv-vars-acc F1 F2 vars acc)
               (cond [(empty? vars) (if (equal? (eval F1) (eval F2)) )
                                           #t
                                           acc)
                      [else (let ((answer_true (check-equiv-vars-acc (subst 'true (first vars) F1)
                                                                        (subst 'true (first \ vars) F2)
                                                                        (rest vars)
                                                                        (append acc (list 'true))))
                                   (answer_false (check-equiv-vars-acc (subst 'false (first vars) F1)
                                                                         (subst 'false (first vars) F2)
                                                                         (rest vars)
                                                                         (append acc (list 'false)))))
                               (cond
                                 [(and (boolean? answer_true) (boolean? answer_false)) #t]
                                 [(list? answer_true) answer_true]
                                 [(list? answer_false) answer_false]))])))
        (check-equiv-vars-acc F1 F2 vars empty)))
   :: eval : formula \rightarrow boolean
   :; reduces a formula containing only true and false to a boolean value
   :: subst : boolsym sym formula \rightarrow formula
   :: replaces every occurrence of sym in formula with boolsym
2. (a) \exists student : in-class(student) \land \neg like(student. owls).
        There is a student in this class who dislikes owls.
    (b) \forall student : in-class(student) \rightarrow has-been(student. Sammy's).
        All students in this class have been to Sammy's.
    (c) \forall student : in-class(student) \rightarrow \exists course : math(course) \land \land Rice(course) \land \neg taken(student, course).
        Every student in this class has not taken at least one Rice mathematics course.
    (d) ∃ student: in-class(student) ∧ ∃ building: on-campus(building) ∧ ∀ room: in-building(room,
```

3. (a) Model: let student and prof be natural numbers n and m, and class-from(n, m) be (n * m) = 0. Then the statement becomes:

There is a student in this class who has not visited any room of some building on campus.

building) $\rightarrow \neg$ has-been(student, room).

 $\forall n \ \exists m : (n * m) = 0 \rightarrow \exists m \ \forall n : (n * m) = 0$

which is true since both sides are true (pick zero for m).

Countermodel: let student and prof be natural numbers n and m, and class-from be equality. Then the statement becomes:

 $\forall n \ \exists m : n = m \rightarrow \exists m \ \forall n : n = m$

which is false, since the left part of the statement is true (take m to be n) and the right part is false (or else all the natural numbers would have to be equal).

(b) Model: let bar be a natural number n, ball be zero, baz(m) be (m+0), and be foo(n, m) be $n \ge m$. Then the statement becomes:

$$\forall n : n \ge (0+0) \to \forall n : n \ge 0$$

Countermodel: let bar be a natural number n, ball be 17, baz(m) be (m-17), and foo(n, m) be $n \ge m$. Then the statement becomes:

$$\forall n : n \ge (17 - 17) \rightarrow \forall n : n \ge 17$$

which is obviously false.

Extra credit: see the model given above.

- 4. (a) " $\forall x \forall y$ " means "for all x and for all y", which is the same as "for all y and for all x".
 - (b) " $\forall x \exists y$ " means "for all x there is at least one y such that ...", but the y can depend on the value of x, and be different each time.

On the other hand, " $\exists y \, \forall x$ " means "there is at least one y such that for all $x \dots$ ". So the same y works for all possible values of x.

So the two parts of the statement do not have the same meaning.

5. If I be a model for $\exists x: (P(x) \lor Q(x))$ with domain D, then $\exists x: (P(x) \lor Q(x))$ is true for I, which means that $(P(d) \lor Q(d))$ is true for some $d \in D$. Therefore, at least one of P(d) and Q(d) is true for some $d \in D$. So at least one of $\exists x: P(x)$ and $\exists x: Q(x)$ is true for I. So $\exists x: P(x) \lor \exists x: Q(x)$ is true for I and I is a model for $\exists x: P(x) \lor \exists x: Q(x)$.

If I is a model for $\exists x: P(x) \vee \exists x: Q(x)$ with domain D, then $\exists x: P(x) \vee \exists x: Q(x)$ is true for I, which means that at least one of $\exists x: P(x)$ and $\exists x: Q(x)$ is true for I, which means that there is some $d \in D$ such that at least one of P(d) and Q(d) is true. So there is some $d \in D$ such that $P(d) \vee Q(d)$ is true. So $\exists x: P(x) \vee Q(x)$ is true for I, and I is a model for $\exists x: P(x) \vee Q(x)$.

6. The statement is false. Consider the interpretation where the domain is $\{true, false\}$, P(x) is x and Q(x) is $\neg x$. Then the statement becomes:

$$\exists x : (x \land \neg x) \equiv \exists x : x \land \exists x : \neg x.$$

The left hand side of the statement is false, while the right hand side is true.

7. To negate an expression with n quantifiers, we can replace each \exists in the sequence with \forall , each \forall in the sequence with \exists , and negate the predicate inside the sequence.

We will prove this statement by induction on the number of quantifiers in the sequence.

Base case: there is a single quantifier, and the statement is therefore true (proved in class).

Induction step: assume the statement is true for n. We now have to prove it for n+1.

Let \bigotimes represent either \exists or \forall , and $\overline{\bigotimes}$ represent \bigotimes replaced with the other quantifier. Then:

$$\neg(\bigotimes x_1 \ldots \bigotimes x_{n+1} : P(x_1, \ldots, x_{n+1})) \equiv \neg(\bigotimes x_1 : Q(x_1)) \equiv \overline{\bigotimes} x_1 : \neg Q(x_1)$$

But $Q(x_1)$ is an expression with n quantifiers, so, by the induction hypothesis, $\neg Q(x_1) \equiv \overline{\bigotimes} x_2 \dots \overline{\bigotimes} x_{n+1} : \neg P(x_1, \dots, x_{n+1})$. So:

$$\neg(\bigotimes x_1 \ldots \bigotimes x_{n+1} : P(x_1, \ldots, x_{n+1})) \equiv \overline{\bigotimes} x_1 \overline{\bigotimes} x_2 \ldots \overline{\bigotimes} x_{n+1} : \neg P(x_1, \ldots, x_{n+1})$$

which proves the statement to be true for n+1, which completes the proof.