COMP 280 : Assignment 10 Solutions

1. (4 pts) A simple airline database consists of a relation direct_flight(from_city, to_city). For each of the
following queries over this database, either express it as a conjunctive query (no negation) or prove
that it cannot be written as a conjunctive query.

(a) There exists a route with only two stopovers from Houston to Paris.
The following conjunctive query captures the above statement.

ans() :- direct_flight(Houston, Stopl),
direct_flight(Stop1, Stop2),
direct_flight(Stop2, Paris),

(b) All routes from Houston to Paris contain two stopovers.
This query is not expressible as a conjunctive query. Consider

DB, = {(Houston, NewY ork), (NewY ork, London), tuple London, Paris}

and
DBy = {(Houston, NewY ork), (NewY ork, London), tuple London, Paris, (Houston, Paris)}.

Clearly, DB, C DB,. The query returns {true} on DB; and returns { false} on DB,. Thus, for
this query q, DBy C DB does not imply that ¢(DB;) C q(DBs). This contradicts the theorem
that DB; C DBy — q(DBy) C g(DB,) for all conjunctive queries g. Therefore, this query is not
conjunctive.

2. (3 pts) An employee database contains a relation EmplInfo with attributes Name, Division, Manager,
Office, and Extension. The database has a functional dependency from Division — Manager. If the
database also has a functional dependency from Name — Manager, must it also satisfy a functional
dependency from Name — Division? Provide a proof or a counterexample.

The functional dependency from Name — division need not hold. Consider the following database:

Name Division Manager Office Extension

Dave Research Sue 322 2548
Andrea Sales Bob 143 5587

Dave Development Sue 322 2548

This database respects the functional dependencies Division — Manager and Name — Manager. How-
ever, it does not have a functional dependency from Name — Division because Dave works in both
Research and Development.

3. (14 pts) In class, we considered the film database query “pairs of actors and directors such that the
actor appeared in a film directed by the director”. One proposal was the conjunctive query

ans(Dir, Actor) < Movies(Title, Dir, Actor),

which we determined was incorrect because a single film might have multiple directors. Instead, we
decided that the correct query is
ans(Dir, Actor) < Movies(Title, Dir, Actor'), Movies(Title, Dir', Actor)

(a) (3 pts) Consider a movie database with a functional dependency from Title — Director. Are the
two above queries equivalent in this case? Prove your answer or provide a counterexample.

Yes, the two queries are equivalent in this case. Let ()1 be the query

ans(Dir, Actor) «+ Movies(Title, Dir, Actor)

and Q2 be the query
ans(Dir, Actor) < Movies(T'itle, Dir, Actor'), Movies(T'itle, Dir', Actor).

Let Movies be a database satisfying the functional dependency Title — Director. We must prove
that Q1 (Movies) = Q2(Movies).
First, assume that (D, A) € Q1(Movies). We must prove that (D, A) € Q2(Movies). Since that
(D, A) € Q1(Movies), then Movies must contain a tuple t = (T, D, A) for some title T. By
defintion, @2 will construct an answer (D, A2) from any pair of tuples t; = (T1, Dy, A1) and
ta = (Th, D2, As) in Movies. Letting t = t; = t2, D; = D and Ay = A. Therefore, (D, A) is in
Q2(Movies).
Next, assume that (D, A} € Qa(Movies). We must prove that (D, A) € Q1(Movies). Since
(D,A) € Q2(Movies), Movies must contain tuples ty = (T, D, A;) and to = (T, D, A) for
some T, A1, ad Ds. Since t; and t; have the same title T, The functional dependency Title —
Director requires D and D; to be the same. Thus, we can rewrite ¢ as (T, D, A). By definition,
Q1 (M ovies) projects the director and actor componments out of all tuples in Movies. Performing
this projection on tuple 5 yields answer (D, A), so (D, A) is in Q1 (Movies).
(3 pts) Consider a movie database with a join dependency

Movies: X[{Title, Actor}, {Title, Director}]
Are the two above queries equivalent in this case? Prove your answer or provide a counterexample.
Yes, the two queries are equivalent in this case. Let @)1 be the query

ans(Dir, Actor) «+ Movies(Title, Dir, Actor)
and ()5 be the query
ans(Dir, Actor) < Movies(Title, Dir, Actor'), Movies(Title, Dir', Actor).

Let Movies be a database satisfying the join dependency
Movies: X[{Title, Actor}, {Title, Director}]

We must prove that Q1 (Movies) = Q2(Movies).
The proof that Q1(Movies) C Q2(Movies) is the same as in part a.

Assume that (D, A) € Q2(Movies). We must prove that (D, A) € Q1(Movies). Since (D, A) €
Q2(Movies), Movies must contain tuples t; = (T, D, A;) and ty = (T, Dy, A) for some T', A, ad
D,. By definition of the join dependency, Movies = Tritie, Actor (Movies) X Trigie, Director (M ovies).
Since t; and ¢, are in Movies, Triie, Actor (Movies) contains tuples (T', A;) and (T, A). Similarly,
TTitle, Director (M ovies) contains tuples (T, D) and (T, D2). The join of rise, Director (M ovies) and
TTitle, Director (M ovies) therefore contains tuples (T, D, A), (T, D, A1), (T, D2, A), and (T, D, A1).
Since Mowvies is equivalent to the result of this join, tuple (T, D, A) must be in Movies. By def-
inition, @1 (M ovies) projects the director and actor componments out of all tuples in Movies.
Performing this projection on tuple (T, D, A) yields answer (D, A), so (D, A) is in Q1(Movies).

(3 pts) Consider a movie database with a join dependency
Movies: X[{Director, Title}, {Director, Actor}]

Are the two above queries equivalent in this case? Prove your answer or provide a counterexample.
No, the two queries are not equivalent in this case. Let ()1 be the query

ans(Dir, Actor) «+ Movies(Title, Dir, Actor)
and ()2 be the query
ans(Dir, Actor) < Movies(Title, Dir, Actor'), Movies(Title, Dir', Actor).

Consider the following Movies database:

Title Director Actor
Fantasia Algar Mouse
Fantasia Armstrong Broom

This database satisfies the given join dependency because, by definition of the dependency,
Movies = Tpirector, Titie (M ovies) X Tpjrector, Actor (M ovies).
Calculating the projections:
T Director,Title (Movies) = {(Algar, Fantasia), (Armstrong, Fantasia)}

T Director, Actor (Movies) = {{Algar, Mouse), (Armstrong, Broom)}.
The join of these two sets produces

Movies = {{Fantasia, Algar, M ouse), (Fantasia, Armstrong, Broom)}.

Thus, the Movies database defined above satisfies the given join dependency.
Q1(Movies) returns {(Algar, Mouse), (Armstrong, Broom)}. Q2(Movies) returns

{(Algar, Mouse), (Algar, Broom), (Armstrong, M ouse), (Armstrong, Broom)}.

As Q2(Movies) contains elements not in Q1 (Movies), these two queries are not equivalent in this
case.

(5 pts) Consider a film database with a functional dependency Title — Director and a join
dependency

Movies: X[{Title, Actor}, {Title, Director}].
Is either dependency redundant in the presence of the other? Specifically, does the functional
dependency imply the join dependency or vice-versa? For each case, provide a proof or coun-
terexample to justify your answer.

e The join dependency does not imply the functional dependency. Consider the following
M ovies database:

Title Director Actor
Fantasia Algar Mouse
Fantasia Armstrong Broom
Fantasia Algar Broom

Fantasia Armstrong Mouse
This database satisfies the join dependency.

T{Title, Actor} (M ovies) = {(Fantasia, Mouse), (Fantasia, Broom)}

T{Title, Director} (Movies) = {(Fantasia, Algar), (Fantasia, Armstrong) }

The join of Tirite, Actory (Movies) and Tirise, Director} (Movies) contains exactly the four
tuples in the database listed above. SO the database satisfies the join dependency. However,
the database does not satisfy the functional dependency, as (Fantasia, Algar, Mouse) and
(Fantasia, Armstrong, Mouse) are both in the database but do not have the same Director.

e The functional dependency does imply the join dependency. To prove this, assume that the
functional dependency holds, but that the join dependency does not hold. Since the join
dependency does not hold, there must exist a tuple (T, D, A) which is in

T{Title,Actor} X T{Title,Director}

, but which is not in the database. Since (T, D, A) is in m;T'itle, Actor } X w;T'itle, Director},
then by definition of X, there must exist tuples (T, Dy, A) and (T, D, A;) in the database.
Since the functional dependency holds, D and D; must be the same. Therefore, (T, D, A)
must be in the database. This contradicts our assumption that (T, D, A) was not in the
database. The assumption that the join dependency does not hold was therefore incorrect,
so the functional dependency does imply the join dependency.

