Overview of Web Programming

Kathi Fisler, WPI
October 6, 2003

This lecture looks at programming for web scripts and sonte®thallenges it raises. These notes accompany a
powerpoint presentation that is also available on the by#igpage.

1 The Problem of Web Programming

Work through the Powerpoint file through the slide called “A Central Problem”

Ideally, we would like to draw analogies between web programd the non-web programs that you write. Some
analogies are obvious:

e Boxes on forms correspond to requesting inputs (ldadin Scheme).

e Web pages/scripts are like functions: they request a nuofheputs from a user and perform some operations
on the input, possibly calling other functions (pagesyssjifor additional processing.

e Pressing buttons on web pages calls functions.

The “central problem” slide points out a critical way in whithis analogy breaks down. Unlike functions, web
scripts terminate as soon as they request inputs from uses0On as they display the boxes for the web form). The
user must press a (submit) button to continue the computafibis means that you have to change how you write
programs when you implement web programs.

Let’s illustrate this with a simple example. Suppose youtedrio write a program that asks a user to input their
age, then displays some information about their abilitydtey Keeping with the idea that we need one page to request
input, then another to display the output, we might write heBee version of this program as follows:

;; request-age-page- void

;; prompts user to input their age

(define (request-age-page
(printf " Enter your age: "))

;; age-page-nonweb- void
;; displays ability to vote based on user’s age
(define (age-page-nonwégb
(begin (request-age-page
(local ((defineage(read)))
(cond[(>= agel8) (printf " Don't forget to vote!" )]
[else(printf " You'll be able to vote in "a years" (— 18 agé)]))))

If this were a real web program, the user would get a page wlithixain which to enter their age and a submit button.
Pressing submit would bring up a new page with the appraprassage from the cond statement. Running it in
Scheme would yield the following interaction:

1we will write our web programs in Scheme because not everitte class knows CGI or PHP programming. It's not hard togtate these
programs into equivalent ones in your favorite web programgrtanguage.



> (age-page-nonwegb
Enter your agel16
Youll be able to vote i years

This program has functions that correspond to pages in a vagyagm. Those functions don't follow the termina-
tion behavior of web scripts though. We said that web scpptst out pages and then terminate. Tagquest-age-page
appears to do that (since nothing happens afteptimdf). Terminate is a stronger condition thougheb programs
don’t even return control flow back to the programs that cileem!

In order to study web programs througj Scheme, we need a wagftoe scripts that look like Scheme functions,
but abort when they are done, rather than returning to thgramos that called them. This is a change to the way
Scheme usually handles functions, so we need a macro foiirgBoripts. The following code achieves this task.
| do not expect you to understand how this macro works — just cpy it into your Scheme file when you are
experimenting with scripts. (Of course, if youvantto know how it works, stop by my office sometime.)

(define abort#f)
(let/cc grab-abort
(set! abort grab-abor))

(define-syntax define-script
(syntax-rules()
[(define-script (script-name arg . . ) body)
(define(script-name arg . .)
(abort body)]))

Let's use the new macro to define our age program as scrigaith®f scheme functions. To do this, change
defineto define-script on both functions (I also edited the name of the main funciimmwe can tell them apart).

;; request-age-page-scripts void

;; prompts user to input their age

(define-script (request-age-page-script
(printf " Enter your age: "))

;; age-page — void
;; displays ability to vote based on user’s age
(define-script (age-pagg
(begin (request-age-page-script
(local ((defineage(read)))
(cond[(>= agel8) (printf " Don’t forget to vote!" )]
[else(printf " You'll be able to vote in "a years" (— 18 agé)]))))

Now, let's run the program again. The script version shoigithithe same answers as the original version:

> (age-pagg
Enter your age:

What happened? Thequest-age-pagscript aborted as soon as it finished, rather than returnaldnttheage-page
program. Thdocal in age-pagaever executed, because the program aborted at the eeduist-age-page

This is the problem of programming on the web. Perhaps tlukddizarre to you, but this really is how web
scripts work in practice. Over the next three classes, wWestwilw you how to program in this style, and a step-by-step
process you can follow to convert programs to ones that vahkvas scripts.

2 Fixing the Age-Page Program

Let's try to figure out how to fix the script versions of tage-pagerogram so that they behave the same way as the
original program. If we want thiocal to execute, we have to make sure it gets invoked beéaneest-age-page-script
terminates. One obvious way to do this is to moveltioal insiderequest-age-page-scrips follows:



;; request-age-page-scripts void
;; prompts user to input their age
(define-script (request-age-page-script
(begin (printf " Enter your age: ")
(local ((defineage(read)))
(cond[(>= agel8) (printf " Don't forget to vote!" )]
[else(printf " You'll be able to vote in "a years" (— 18 agé)]))))

;; age-page +— void

;; displays ability to vote based on user’s age

(define-script (age-pagg
(request-age-page-script

This violates the spirit of web scripts though, becausesxdre only supposed to request inputs or display messages
based on information entered in previous pages. Put anetigrby putting thdocal in the same function as the
request for input, we've taken out the “submit” button frdme tveb page. We need another way to do this.

We said earlier that submit buttons resemble calling fumsti Let’s capture this in the code my moving tbeal
into another script that gets called after we ask the usenfurt:

;; submit-age — void
;; reads the age the user entered and displays the votimng stat
(define-script (submit-age
(local ((defineage(read)))
(cond[(>= agel8) (printf " Don't forget to vote!" )]
[else(printf " You'll be able to vote in "a years" (— 18 agg)])))

;; request-age-page-scripts void
;; prompts user to input their age
(define-script (request-age-page-script
(begin (printf " Enter your age: ")
(submit-ag®)

;; age-page +— void

;; displays ability to vote based on user’s age

(define-script (age-pagg
(request-age-page-script

Note that theead occurs in thesubmit-agescript, not inrequest-age-page-script his is consistent with how the web
works: the scripts that process the inputs are the onesdhadtthe inputs.
Running this version yields the desired interaction:

> (age-pagg
Enter your agel16
Youll be able to vote i years

Why did this version work? Notice that beforeguest-age-page-scripan terminate, it must casubmit-agewhich
continues the computation. Tlsabmit-agescript displays the voting information to the user, thenr&doControl
never gets back teequest-age-page-scripbut that's okay, because it didn’t have more work to do argwahis
example illustrates how to program for the web: each scmis @another script to continue the computation just
before it would otherwise terminate.

3 Returning to Adding Numbers

The Powerpoint slides that we used to start the lecture weirggchn example of a simple adder that requests two
numbers on two separate pages and displays their sum. hetswrite sufficient scripts for this example. We'll start
with a conventional version of the program.



;; adder-page + void

;; requests two numbers from user and displays their sum
(define (adder-pagg

(begin (printf " Enter first number: ")
(local ((definenl (read)))
(begin (printf " Enter second number: ")
(local ((definen2 (read)))
(printf " sum: "a™n" (+ n1n32))))))

To convert this to a web program, we need to break it into @gi¢lcat correspond to scripts. A script prompts a user
for inputs then calls a function corresponding to the sulimiton. We leave the number request in place and move
the rest of the code into a submit function as follows:

;» submitl :— void
;; get first number from user and prompt for second
(define-script (submit)
(local ((definenl (read)))
(begin (printf " Enter second number: ")
(local ((definen2 (read)))
(printf " sum: "a’n" (+ n1 n2)))))

;; adder-page + void
;; requests two numbers from user and displays their sum
(define-script (adder-page
(begin (printf " Enter first number: ")
(submit))

Readihg the second number also requires a script, so we mewetondbcal into another submit function:

;; submitl :— void
;; get first number from user and prompt for second
(define-script (submit)
(local ((definenl (read)))
(begin (printf " Enter second number: ")

(submit2)))

;; submit2 :— void
;; get second number from user and display sum
(define-script (submitg
(local ((definen2 (read)))
(printf " sum: "a™n" (+ n1 n2)))

;; adder-page + void
;; requests two numbers from user and displays their sum
(define-script (adder-page
(begin (printf " Enter first number: ")
(submitl))

Running this version yields the following interaction:

> (adder-pagg
Enter first number5
Enter second numbe8

[BUG] reference to undefined identifier: n1



Where's the problem? Notice thatibmit2tries to print the sum ofil andn2, but it doesn’t haval (which was
read in as part afubmit). To fix this, we passlalong as a parameter snbmit2
;; submitl :— void
;; get first number from user and prompt for second
(define-script (submit)
(local ((definenl (read)))
(begin (printf " Enter second number: ")
(submit2 nJ})))

;; submit2 :— void
;; get second number from user and display sum
(define-script (submit2 n}
(local ((definen2 (read)))
(printf " sum: "a"n" (+ n1 n2)))

;; adder-page + void
;; requests two numbers from user and displays their sum
(define-script (adder-pagg
(begin (printf " Enter first number: ")
(submit))

This version runs as expected.

For those of you with web programming experientéwould be handled as a hidden variable. HTML supports
hidden variables for precisely this reason: breaking mogrinto web scripts requires a way to pass values between
scripts.

4 Onward

We've seen a couple of simple examples of converting prograothe web. The problem gets harder when the
programs involve more conditionals, recursive functi@m other features. You'll see how to address these problems
systematically in the next two lectures.

For now, return to the PPT presentation and follow it alonthtoend.



