
Types: Motivation and Type Checking

Kathi Fisler, modified from CS173 notes by sk and dbtucker

November 12, 2002

1 Types

1.1 Motivation

Until now, we’ve partially ignored the problem of program errors. We haven’t done so entirely: if a programmer writes

{fun {x}}

we do reject this program, because it is not syntactically legal—every function must have a body. But what if, instead,
he were to write

{+ 3
{fun {x} x}}

Right now, our interpreter might produce an error such as

numv-n: not a number

What’s happening here? A check deep in the bowels of our interpreter is detecting the use of a non-numeric value in
a position expecting a number.

At this point, we can make a distinction between the syntactic and meta views of a program. When we implement
a language, we are really working with two languages: the one we are implementing, and the one we are writing the
implementation in (in this course, Scheme is the latter). The latter is often called the meta-language. Whenever we talk
about aspects of our interpreter (such as representations, errors, etc), it helps to distinguish which view we are working
in. For example, when we implemented assignment using Scheme’s boxes, we were using a meta-representation for
stores (because the representation came from the implementation language).

In similar fashion, we can ask whether program errors are coming from the syntactic or meta levels. The numv-n
error above is an error at the syntactic level,1 because the interpreter is checking for the correct use of its internal rep-
resentation. If we had division in the interpreted language, however, and if the corresponding numV/ procedure failed
to check that the denominator was non-zero, the error would come directly from Scheme’s division procedure. At that
point, we would be relying fully on the meta implementation. If it caught errors, our interpreter would halt, whereas
if the implementation did not adequately catch errors, our interpreter would have to either catch them explicitly or
provide an unfaithful implementation to the user.

Of course, this discussion about the source of error messages somewhat misses the point: we really ought to
reject this program without ever executing it. But the act of rejecting it has become harder, because this program is
legitimate from the perspective of the parser. It’s only illegal from the semantic viewpoint, because the meaning of +
is an operator that does not accept functions as arguments. Therefore, we clearly need a more sophisticated layer that
checks for the validity of programs.

How hard is this? Rejecting the example above seems pretty trivial: indeed, it’s so easy, we could almost build
this into the parser (to not accept programs that have syntactic functions as arguments to arithmetic primitives). But
obviously, the problem is more difficult in general. Consider this program:

{+ 3
{f 5}}

1Not to be confused with a syntax error! (which arises if a program doesn’t match the input grammar)

1

Is this program valid? Clearly, it depends on whether or not f, when applied to 5, evaluates to a number. You could
reasonably say that if we were given the value of f, we could determine this easily. That is indeed true sometimes: for
instance,

{let {f {fun {x} {+ x 1}}}
{+ 3

{f 5}}}

is clearly legal, whereas

{let {f {fun {x}
{fun {y} {+ x y}}}}

{+ 3
{f 5}}}

is not. Here, simply substituting f in the body seems to be enough. The problem does not quite reduce to the parsing
problem that we had earlier—a function application is necessary to determine the program’s validity. But we would
like to determine when a program will lead to an error without having to run it! This is the province of types.

Starting with this lecture, we will study type systems (a term we will make more formal over time; for now, we can
think of it as the collection of types in the language) in considerable detail. First, we need to build an intuition for the
problems that types can address, and the obstacles that they face. Consider the following program:

{+ 3
{if0 mystery

5
{fun {x} x}}}

This program executes successfully (and evaluates to 8) if mystery is bound to 0, otherwise it results in an error.
No parser can possibly detect that! The value of mystery might arise from any number of sources. For instance,
it may be bound to 0 only if some mathematical statement, such as the Collatz conjecture, is true.2 In fact, we don’t
even need to explore such a specific terrain: our program may simply be

{+ 3
{if0 {read-number}

5
{fun {x} x}}}

Unless we can read the user’s mind, we have no way of knowing whether this program will execute without error.
In general, even without involving the mystery of mathematical conjectures or the vicissitudes of users, we cannot
statically determine whether a program will halt with an error, because of the Halting Problem.

This highlights an important moral:

Type systems are always prey to the Halting Problem. Consequently, a type system for a general-purpose
language must always either over- or under-approximate: either it must reject programs that might have
run without an error, or it must accept programs that will error when executed.

While this is a problem in theory, what impact does this have on practice? Quite a bit, it turns out. In languages
like Java, programmers think they have the benefit of a type system, but in fact many common programming patterns
force programmers to employ casts instead. Casts intentionally subvert the type system, leaving most of the validity
checking for execution time. At present, it appears that avoiding casts entirely greatly hobbles the set of Java programs
a user might construct. This clearly indicates that Java’s evolution is far from complete. In contrast, most of the type
problems of Java are not manifest in a language like ML, but its type systems still holds a few (subtler) lurking
problems. In short, there is still much to do before we can consider type system design a solved problem.

2Consider the function
�������

defined as follows: If
�

is even, divide
�

by 2; if odd, compute � �	��
 . The Collatz conjecture posits that, for
every positive integer

�
, there exists some � such that

�����������

. (The sequences demonstrating convergence to 1 are often quite long, even for

small numbers! For instance: 7 � 22 � 11 � 34 � 17 � 52 � 26 � 13 � 40 � 20 � 10 � 5 � 16 � 8 � 4 � 2 � 1.)

2

1.2 What Are Types?

Formally, a type is any property of a program that we can establish without executing the program. In particular,
types capture the intuition above that we would like to predict a program’s behavior without executing it. Of course,
given a general-purpose programming language, we cannot predict its behavior entirely without execution (think of the
user input example, for instance). So any static prediction of behavior must necessarily be an approximation of what
happens. People conventionally use the term type to refer not just to any approximation, but one that is an abstraction
of the set of values.

A type labels every expression in the language, recording what kind of value evaluating that expression will yield.3

That is, types describe invariants that hold for all executions of a program. It approximates in that it records only what
kind of value the expression yields, not the precise value itself. For instance, types for the language we have seen so
far might include number and function. The operator + consumes only values of type number, thereby rejecting a
program of the form

{+ 3
{fun {x} x}}

To reject this program, we did not need to know precisely which function was the second argument to +, be it
{fun {x} x} or {fun {x} {fun {y} {+ x y}}}. Since we can easily infer that 3 has type number and
{fun {x} x} has type function, we have all the information we need to reject the program without executing it!

Note that we are careful to refer to valid programs, but never correct ones. Types do not ensure the correctness
of a program. They only guarantee that the program does not make certain kinds of errors. Many errors lie beyond
the ambit of a type system, however, and are therefore not caught by it. Most type systems will not, for instance,
distinguish between a program that sorts values in ascending order from one that sorts them in descending order, yet
in many domains the difference between those two can have extremely telling consequences!

1.3 Typing Rules

Just as we need a language for capturing the semantics of a language, we need a language to capture the typing
restrictions in a language. Recall that types need to abstract over sets of values; earlier, we suggested two possible
types, number and function. Since those are the only kinds of values we have for now, we could just go with those as
our types.

We present a type system as a collection of typing rules, which describe how to determine the type of an expression.
There must be at least one type rule for every kind of syntactic construct so that, given a program, at least one type
rule applies always to every sub-term. Usually, typing rules are recursive, and determine an expression’s type from the
types of its parts.

The type of any numeral is number: � �������	��
�
(read this as saying “any numeral

�
has type number”) and of any function is function:

����� � ��������� ������������ !�
but what is the type of an identifier? Clearly, we need a type environment (a mapping from identifiers to types). It’s
conventional to use " for the type environment. As with the value environment, the type environment must appear on
the left of every type judgment. All type judgments will have the following form:

"$#�% ��&
where % is an expression and & is a type, which we read as “ " proves that % has type & ”. Thus,

"'# � �!�����	��
�
"$# �(��� � �����)��� �(����������� ��

"'# � � "+* �-,
3An expression may well yield different kinds of values on different executions within the same program. We’ll see much more about this in

subsequent lectures! For now, let’s assume it’s not a problem.

3

The last rule simply says that the the type of identifier � is whatever type it is bound to in the environment.
This leaves only addition and application. Addition is quite easy:

�������	��
������� ����������
�������
���������	�����	��
�������

All this leaves is the rule for application. We know it must have roughly the following form:

����� ��!"
��$#&%(')	� ���+*,��-/. 0/010
���2���3*��4�65$575

where
-7.

is the type of the expression
*

(we will often use
-

to name an unknown type).
What’s missing? Compare this against the semantic rule for applications. There, the representation of a function

held an environment to ensure we implemented static scoping. Do we need to do something similar here?
For now, we’ll take a much simpler route. We’ll demand that the programmer annotate each function with the type

it consumes and the type it returns. This will become part of a modified function syntax. That is, a programmer might
write

{fun {x : number} : number
{+ x x}}

where the two type annotations are now required: the one immediately after the argument dictates what type of value
the function consumes, while that after the argument but before the body dictates what type it returns. We must change
our type grammar accordingly; to represent such types, we conventionally use an arrow (8), where the type before
the arrow represents the argument and that after the arrow represents the function’s return value:

type ::= number9
(type 8 type)

(notice that we have dropped the overly naı̈ve type function from our type language). Thus, the type of the function
above would be : ��
������� 8 ��
�������<; . The type of the outer function below

{fun {x : number} : (number -> number)
{fun {y : number} : number
{+ x y}}}

in : ��
������� 8=: ��
������� 8 ��
�������>;?; , while the inner function has type : ��
������� 8 ��
�������@; . In type judgments, we will
often leave out the outer parentheses around the types.

Equipped with these types, the problem of checking applications becomes easy:

���+�A� : -7B 8 -1C$; ����*,��-$B
�������3*�����- C

That is, if you provide an argument of the type the function is expecting, it will provide a value of the type it promises.
Notice how the judicious use of the same type name accurately captures the sharing constraints we desire.

There is one final bit to the introductory type puzzle: how can we be sure the programmer will not lie? That is, a
programmer might annotate a function with a type that is completely wrong (or even malicious). (A different way to
look at this is, having rid ourselves of the type function, we must revisit the typing rule for a function declaration.)
Fortunately, we can guard against cheating and mistakes quite easily: instead of blindly accepting the programmer’s
type annotation, we check it: �ED �(F -7B&G<�IHJ��-1C��������KMLN� � ��- B ����- C H7��� : - B 8 - C ;
This rule says that we will believe the programmer’s annotation if the body has type

- C
when we extend the environment

with � bound to
- B

.
Notice a few things about the types for functions and applications:

4

� When typing the function declaration, we assume the argument will have the right type and guarantee that the
body, or result, will have the promised type.

� When typing a function application, we guarantee the argument has the type the function demands, and assume
the result will have the type the function promises.

This interplay between assumptions and guarantees is quite crucial to typing functions. Notice that the two “sides” are
carefully balanced against each other to avoid fallacious reasoning about program behavior. In addition,

� Just as number does not specify which number will be used, a function type does not limit which of many
functions will be used. If, for instance, the type of an argument to a function is

���������
	�����������
	�������������
	��
,

the argument could perform either addition or subtraction. The type checker is able to reject misuse of any
function that has this type without needing to know which actual function the programmer used.

Puzzles
� It’s possible to elide the return type annotation on a function declaration, leaving only the argument type anno-

tation. Do you see how?

� Because functions can be nested within each other, a function body may not be closed at the type of checking it.
But we don’t seem to capture the definition environment for types the way we did for procedures. So how does
such a function definition type check? For instance, how does the second example of a typed procedure above
pass this type system?

2 Implementing Typing Rules: A Simple Type Checker

Typing rules look similar to the judgements we wrote to describe language semantics. We can implement semantics
judgements in the form of an interpreter. Similarly, we can implement type rules (or type judgements) via a program
called a type-checker. Actually, there are many different ways to turn typing rules into programs that perform type
checking; we’ll look at different approaches in this segment of the course. For sake of concreteness, however, let’s
consider one for now.

The previous section added type annotations to our syntax for function declarations. If we want to write a type
checker, we must extend our datatype for functions to capture those annotations:

(define-datatype TFunExp TFunExp?
[numE (n number?)]
[varE (v symbol?)]
[addE (lhs TFunExp?)

(rhs TFunExp?)]
[funE (param symbol?)

(paramtype type?)
(returntype type?)�

body TFunExp? �]
[appE (fun TFunExp?)

(arg TFunExp?)])

Note that the only case that changed from our old AFunExp definition is the funE case, as that is the only case to which
we’ve added annotations. Note also that the new fields are of a new datatype called type, so we have to define that as
well.

(define-datatype type type?
[numberT]
[functionT (from type?)

(to type?)])

Given these definitions, a basic type checker could walk the datastructure for a program checking that each kind
of expression respects its typing rules. Here’s the skeleton of that program that handles the numE and addE cases.

5

;; type-check : TFunExp � type
;; returns type of given expression or raises error if expression
;; violates the typing rules
(define (type-check texp)

(cases TFunExp texp
[numE (n) (numberT)]
[varE (v) . . .]
[addE (lhs rhs)

(cond [(and (numberT? (type-check lhs))
(numberT? (type-check rhs)))

(numberT)]
[else (error ’type-check " � received non-numeric argument")])]

[funE (param paramtype returntype body) . . .]
[appE (fun arg) . . .]))

It may seem strange that our type checker returns a type rather than a boolean (indicating whether the program checked
correctly). The latter approach would require us to annotate every expression with its type (which would get tedious
and cumbersome!). Whenever we leave some expressions un-annotated (such as �), our type checker is actually doing
a combination of type inference based on what we know of the primitives and type checking of user-defined functions
and variables. The contract on type-check reflects this combination.

3 Influences on Type System Design

Designing a type system involves finding a careful balance between two competing forces:

1. Having more information makes it possible to draw richer conclusions about a program’s behavior, thereby
rejecting fewer valid programs or permitting fewer buggy ones.

2. Acquiring more information is difficult:

� It may place unacceptable restrictions on the programming language.
� It may require greater computational expense.
� It may force the user to annotate parts of a program. Many programmers (sometimes unfairly) balk at

writing anything beyond executable code, and may thus view the annotations as onerous.
� It may ultimately hit the limits of computability, an unsurpassable barrier. (Often, designers can surpass

this barrier by changing the problem slightly, though this usually moves the task into one of the three
categories above.)

We will see instances of this tension in this course, but a fuller, deeper appreciation of these issues is the subject
of an entire course (or more) to itself!

4 Why Types?

Type systems are not easy to design, and are sometimes more trouble than they are worth. This is, however, only rarely
true. In general, types form a very valuable first line of defense against program errors. Of course, a poorly-designed
type system can be quite frustrating: Java programming sometimes has this flavor. A powerful type system such as
that of ML, however, is a pleasure to use. Programmers who are familiar with the language and type system report
that programs that type correctly often work correctly within very few development iterations!

Even in a language like Java, types (especially when we are not forced to subvert them with casts) perform several
valuable roles:

� Naturally, when they detect legitimate program errors, they help reduce the time spent debugging.

6

� Type systems catch errors in code that is not executed by the programmer. This matters because if a program-
mer constructs a weak test suite, many parts of the system may receive no testing. The system may thus fail
after deployment rather than during the testing stage. (Dually, however, passing a type checker makes many
programmers construct poorer test suites—a most undesirable and unfortunate consequence!)

� They help document the program. As we discussed above, a type is an abstraction of the values that an expression
will hold. Explicit type declarations therefore provide an approximate description of a method’s behavior.

� Compilers can exploit types to make programs execute faster, consume less space, spend less time in garbage
collection, and so on.

� While no language can eliminate arbitrarily ugly code, a type system imposes a baseline of order that prevents
at least a few truly impenetrable programs—or, at least, prohibits certain kinds of terrible coding styles (such as
making lists whose elements aren’t all of the same type).

5 Typing the Infinite Loop

Given the language TFunExp (typed AFunExp), can we write a recursive program? Let’s just try to write an infinite
loop. Our first attempt might be this AFunExp program

{let {f {fun {i}
{f i}}}

{f 10}}

which, expanded out, becomes

{{fun {f}
{f 10}}

{fun {i}
{f i}}}

When we place type annotations on this program, we get

{{fun {f : (number -> number)} : number
{f 10}}

{fun {i : number} : number
{f i}}}

These last two steps don’t matter, of course. This program doesn’t result in an infinite loop, because the f in the body
of the function isn’t bound, so after the first iteration, the program halts with an error.

As an aside, this error is easier to see in the typed program: when the type checker tries to check the type of the
annotated program, it finds no type for f on the last line. Therefore, it would halt with a type error, preventing this
erroneous program from ever executing.4

Okay, that didn’t work, but we knew about that problem: we saw it before when introducing recursion. At the time,
we asked you to consider whether it was possible to write a recursive function without an explicit recursion construct.
We have since seen that this is possible from the lambda calculus lecture (using the Y combinator5). Without going
into the full glory of Y, we can write an infinite loop by exploiting its central idea, namely self-application:

{let {omega {fun {x}
{x x}}}

{omega omega}}

How does this work? Simply substituting omega with the function, we get
4In this particular case, however, a simpler check would prevent the erroneous program from starting to execute, namely checking to ensure

there are no free variables. Since the identifier is free in the last line, the program will halt with an unbound identifier error if execution ever reaches
that code fragment.

5A combinator is simply a procedure that has no free variables. Why would it have such a name?

7

{{fun {x} {x x}}
{fun {x} {x x}}}

Substituting again, we get

{{fun {x} {x x}}
{fun {x} {x x}}}

and so on. In other words, this program executes forever! It is conventional to call the function � (lower-case omega),
and the entire expression

�
(upper-case omega).6

Okay, so
�

seems to be our ticket. This is clearly an infinite loop in AFunExp. All we need to do is convert it to
TFunExp, which is simply a matter of annotating all procedures. Since there’s only one, � , this should be especially
easy.

To annotate � , we must provide a type for the argument and one for the result. Let’s call the argument type, namely
the type of x, ��� and that of the result ��� . The body of � is {x x}. From this, we can conclude that ��� must be a
function (arrow) type, since we use x in the function position of an application. That is, ��� has the form ��	�
��� , for
some � 	 and � yet to be determined.

What can we say about � 	 and � ? � 	 must be whatever type x’s argument has. Since x’s argument is itself x, � 	
must be the same as the type of x. We just said that x has type � � . This immediately implies that

��������	�
����������
���

In other words,
� � ��� �
��

What type can we write that satisfies this equation? In fact, no types in our type language can satisify it, because
this type is recursive without a base case. Any type we try to write will end up being infinitely long. Since we cannot
write an infinitely long type (recall that we’re trying to annotate � , so if the type is infinitely long, we’d never get
around to finishing the text of the program!), it follows by contradiction7 that � and

�
cannot be typed in our type

system, and therefore their corresponding programs are not programs in TFunExp. (We are being rather lax here—what
we’ve provided is informal reasoning, not a proof—but such a proof does exist.)

6 Termination

We concluded our exploration of the type of
�

by saying that the annotation on the argument of � must be infinitely
long. A curious reader ought to ask, is there any connection between the boundlessness of the type and the fact that
we’re trying to perform a non-terminating computation? Or is it mere coincidence? In fact, it’s not—TFunExp is a
rather strange language!

TFunExp, which is a first cousin of a language you’ll sometimes see referred to as the “simply-typed lambda
calculus”,8 enjoys a rather interesting property: it is said to be strongly normalizing. This intimidating term says of a
programming language that no matter what program you write in the language, it will always terminate!

To understand why this property holds, think about our type language. The only way to create compound types
is through the function constructor. But every time we apply a function, we discharge one function constructor: that
is, we “erase an arrow”. Therefore, after a finite number of function invocations, the computation must “run out of
arrows”.9 Because only function applications can keep a computation running, the computation is forced to terminate.

This is a very informal argument for why this property holds—it is cetainly far from a proof (though, again, formal
proofs of this property do exist). However, it does help us see why we must inevitably have bumped into an infinitely
long type while trying to annotate the infinite loop. This formal property also tells us that, no matter how valid our
reasoning about the particulars of typing

�
, in general, it is impossible. We will need a different language if we must

write infinite loops.
6Strictly speaking, it’s anachronistic to refer to the lower and upper “case” for the Greek alphabet, since it predates moveable type in the West

by two millennia. I’m not sure why Greek has two cases, anyway.
7We implicitly assumed it would be possible to annotate � and explored what that type annotation would be. The contradiction is that no such

annotation is possible.
8Why “simply”? You’ll see what other options there are later.
9Oddly, this seems to never happen to the heroes of Indian and other ancient mythologies whose warriors fought with bows.

8

What good is a language without infinite loops?!? Well, think how often you encountered a program that truly does
(or, rather, is intended to) run forever . . . That’s what we thought. (You should actually be able to come up with plenty
of answers: operating systems, for instance!) In contrast, there are lots of programs that we would like to ensure will
not run forever. These include:

� real-time systems

� program linkers

� packet filters in network stacks

� client-side Web scripts

� network routers

� photocopier (and other) device initialization

� configuration files (such as Makefiles)

and so on. That’s what makes the simply-typed lambda calculus so neat: instead of pondering and testing endlessly
(no pun intended), we get mathematical certitude that, with a correct implementation of the type checker, no infinite
loops can sneak past us.

Of course, programming in this language can be a bit unwieldy. Nevertheless, it may still be useful to think of
it as an “object code”, namely as a target for compilers of higher-level languages. Many people now use C, which
was intended for humans, as a mere back-end for their compilers (where C takes the place of assembly language,
being more portable and offering slightly better features such as register allocation). Likewise, in many domains, it
may make sense to offer a better surface syntax, but use the simply-typed lambda calculus as a back-end target for a
compiler. Indeed, next week we will see how effective a translator of this form can be, up to the point of inferring the
type annotations!

Puzzle
� We’ve been told that the Halting Problem is undecidable. Yet here we have a language accompanied by a

theorem that proves that all programs will terminate. In particular, then, the Halting Problem is not only very
decidable, it’s actually quite simple: In response to the question “Does this program halt”, the answer is always
(a loud and affirmative) “Yes!” What gives? Did the folks who wrote down the Halting Problem miss something?
(Think this through carefully. You should be able to offer a very precise answer.)

� While the simply-typed lambda calculus is fun to discuss, it may not be the most pliant programming language,
even as the target of a compiler (much less something programmers write explicitly). Partly this is because
it doesn’t quite focus on the right problem. To a Web browsing user, for instance, what matters is whether a
downloaded program runs immediately. If it doesn’t, then sometimes whether it runs after five minutes or five
days, or even loops forever, scarcely matterss, as the user’s attention has flitted to some other topic.

Consequently, a better variant of the lambda calculus might be one whose types reflect resources, such as time
and space. The “type” checker would then ask the user running the program for resource bounds, then determine
whether the program can actually execute within the provided resources. Can you design and implement such a
language? Can you write useful programs in it?

7 Typed Recursive Programming

The last time we introduced recursion as an explicit language construct, it was because our limited imaginations did
not figure out Y on their own. To compensate, we added a recursion construct. We later discovered that Y would
have accomplished the same effect (conceptually, even if not in terms of efficiency, say). This time, however, there
is no lurking, secret way of reclaiming recursion: strong normalization says we really are sunk. So we’ll have to add
recursion again, explicitly, this time because we really don’t have a choice.

To do this, we’ll simply reintroduce our rec construct to define the language TFunRecExp. The BNF for the
language is

9

<TFunRecExp> ::= <num>
| {+ <TFunRecExp> <TFunRecExp>}
| {fun {<id> : <type>} : <type> <TFunRecExp>}
| {<TFunRecExp> <TFunRecExp>}
| {rec {<id> : <type> <TFunRecExp>} <TFunRecExp>}

where

<type> ::= number
| (<type> -> <type>)

Note that the rec construct now needs an explicit type annotation also. As an example program that uses rec,
consider the following program that sums all numbers smaller than a given number (the name Sigma mimics the
mathematical

�
used for this purpose):

{rec {Sigma : {number -> number}
{fun {n : number} : number {+ n {Sigma {+ n -1}}}}}

{Sigma 5}}

Two observations arise with this example: first, we are now able to write (and type) programs that will not terminate;
second, some of our type information may appear redundant between the rec and fun expressions, but it is not
redundant in the general case (can you construct an example?).

What is the type judgment for rec? It must be of the form
�����

�����	��
	����������������	�����

since we want to conclude something about the entire term. What goes in the antecedent? We can determine this more
easily by realizing that a rec is a bit like an immediate function application—after all, it’s a refinement of with. So
just as with functions, we’re going to have assumptions and guarantees, just both in the same rule.

We want to assume that
� �

is a legal annotation, and use that to check the body; but we also want to guarantee that���
is a legal annotation. Let’s do them in that order. The former is relatively easy:

��� �! "� �$# �%�&��� �����
�����	��
	����������������	�����

Now let’s hazard a guess about the form of the latter:
�'� �! (��� # �%���� ���)�*���
�����	��
	�������� � �����	�����

But what the structure of the term named by
�
? Surely it has references to the identifier named by

�
in it, but

�
is almost

certainly not bound in
�

(and even if it is, it’s not bound to the value we want for
�
). Therefore, we’ll have to extend

�

with a binding for
�
—not surprising, if you think about the scope of

�
in a rec term—to check

�
also:

�'� �+ ,��� # �-���� �'� �! (��� # ���*���
�����	��
	�������� � �����	�����

Is that right? Do we want
�

to have type
�

, the type of the entire expression? Not quite: we want it to have the type
we promised it would have, namely

� �
:

�'� �! (� �.# �%���� �'� �! (� �$# �/�0��� �
�����	��
	����������������	�����

Now we can understand how the typing of recursion works. We extend the environment not once, but twice. The
extension to type

�
is the one that initiates the recursion; the extension to type

�
is the one that sustains it. Both

extensions are therefore necessary. And because a type checker doesn’t actually run the program, it doesn’t need an
infinite number of arrows. When type checking is done and execution begins, the run-time system does, in some sense,
need “an infinite quiver of arrows”, but we’ve already seen how to implement that using two different representations
of environments!

10

Exercises

Typing recursion looks deceptively simple, but it’s actually worth studying in a bit of detail. Take a simple example
such as � and work through the rules:

� Does the expression named by � have to be a procedure? Do the typing rules for rec depend on this? And if
not, can you write a judgment for rec that forces � to syntactically be a procedure?

� First, write � with type annotations so it passes the type checker.

� Second, trace through the type rules to make sure you understand why this version of � types. Draw the tree
of judgments applied and discharged. This tree, like botanical ones but unlike other ones in computer science,
actually grows upward; its leaves are axioms, or rules with no antecedents (so they are always true). The axioms
in our type system are the judgments for identifiers and numbers.

� Define the BNF entry and generate a type judgment for with in the typed language.

8 Recursive Types

8.1 Declaring Recursive Types

We saw in the previous section how recwas necessary to write recursive programs. But what about defining recursive
types? Recursive types are present all over computer science: even basic data structures like lists and trees are recursive
(since the rest of a list is also a list, and each sub-tree is itself a tree).

Suppose we try to type the program

{rec {sum : ???
{fun {L : ???} : number

{if {empty? L}
0
{+ {first L} {sum {rest L}}}}}}

{sum {Cons 1 {Cons 2 {Cons 3 Empty}}}}}

(We’ve taken generous liberties in this program, assuming the existence of ordinary conditionals and list primitives.)
First, consider how our existing typing rules will work on this program: what will the rule for + require? Looking

back to the rules (or our type-check program that implemented them), {first L} will have to be a number in order
for this program to satisfy the rules. This means that we really have a list of numbers. Let’s rewrite the program to
make this expectation explicit: the primitives are defined only for lists of numbers.

{rec {sum : ???
{fun {L : ???} : number

{if {numempty? L}
0
{+ {numfirst L} {sum {numrest L}}}}}}

{sum {numCons 1 {numCons 2 {numCons 3 numEmpty}}}}}

(Ignore concerns about how to generalize lists to contain other types – we’ll come back to that issue next week.)
Now, what should we write in place of the question marks? Let’s consider the type of L. What kind of value can

be an argument to L? Clearly a numeric cons, because that’s the argument supplied in the first invocation of sum. But
eventually, a numeric empty is passed to L also. This means L needs to have two types: (numeric) cons and empty.

In languages like ML (and Java), procedures do not consume arguments of more than one distinct type. Instead,
they force programmers to define a new type that encompasses all the possible arguments. This is precisely what a
datatype definition, of the kind we have been writing in Scheme, permits us to do. So let’s try to write down such a
datatype in a hypothetical extension to our (typed) implemented language:

{datatype numList
{[numEmpty]

11

[numCons {fst : number}
{rst : ???}]}

{rec {sum : (numList -> number) ...}
{sum ...}}}

We assume that a datatype declaration introduces a collection of variants, followed by an actual body that uses the
datatype. What type annotation should we place on rst? This should be precisely the new type we are introducing,
namely numList.

A datatype declaration therefore enables us to do a few distinct things all in one notation:

1. Give names to new types.

2. Introduce conditionally-defined types (variants).

3. Permit recursive definitions.

If these are truly distinct, we should consider whether there are more primitive operators that we may provide, so a
programmer may assemble a datatype if that’s what they need, but they could possibly use the primitives to assemble
other types also.

But how distinct are these three operations, really? Giving a type a new name would be only so useful if the type
were simple (for instance, creating the name bool as an alias for boolean may be convenient, but it’s certainly
not conceptually earth-shattering), so this capability is most useful when the name is assigned to a complex type.
Recursion needs a name to use for declaring self-references, so it depends on the ability to introduce a new name.
Finally, well-founded recursion depends on having both recursive and non-recursive cases, meaning the recursive type
must be defined as a collection of variants (of which at least one is not self-referential). So the three capabilities
coalesce very nicely.

8.2 Judgments for Recursive Types

Let’s consider another example of a recursive type: a family tree.

{datatype FamilyTree
{[unknown]
[person {name : string}

{mother : FamilyTree}
{father : FamilyTree}]}

...}

This data definition allows us to describe as much of the genealogy as we know, and terminate the construction when
we reach an unknown person. What type declarations ensue from this definition?

���������	�
������������������
�	�	�

�����! ��	�"�# �$%�	�&�('�)*�����*�%�����+�!���,)-�������������
�	�	�./�����*�%�����+�!���

This doesn’t yet give us a way of distinguishing between the two variants, and of selecting the fields in each variant.
In Scheme, we use cases to perform both of these operations. A corresponding case dispatcher for the above datatype
might look like

{FamilyTree-cases v
[{unknown} ...]
[{person n m f} ...]}

Its pieces would be typed as follows:

021�3 �#���#�*���4���+�!�	� 051 �.67�.8 0:9 �5;/<>=@?�ACBED(FG��;H���#�*���4���+�!�	��FJIK;L�������������
�	�	�EM 1 �	N,�.8
051KO

FamilyTree-cases
3PO�9 ���������	�+�(MQ�R6�S O�9 �����. E�	�T�U�VI�MW�	N!S#S,�R8

12

In other words, to type the entire cases statement to type � , we first ensure that the value being dispatched is of the
right type. Then we must make sure each branch of the switch returns a � .10 We can ensure that by checking each of
the bodies in the right type environment. Because unknown has no fields, its cases branch binds no variables, so
we check ��� in

�
. In the branch for person, however, we bind three variables, so we must check the type of ��� in a

suitably extended
�

.
Though the judgment above is for a very specific type declaration, the general principle should be clear from what

we’ve written. Effectively, the type checker introduces a new type rule for each typed cases statement based on the
type declaration at the time it sees the declaration. Writing the judgment above in terms of subscripted parameters is
tedious but easy.

Given the type rules above, consider the following program:

{datatype FamilyTree
{[unknown]
[person {name : string}

{mother : FamilyTree}
{father : FamilyTree}]}

{person "Mitochondrial Eve" {unknown} {unknown}}}

What is the type of the expression in the body of the datatype declaration? It’s �	��
������������� . But when the value
escapes from the body of the declaration, how can we access it any longer? (We assume that the type checker renames
types consistently, so �	��
������������� in one scope is different from �	��
�������������� in another scope—just because the
names are the same, the types should not conflated automatically.) It basically becomes an opaque type that is no
longer usable. This is not very useful at all!11

At any rate, the type checker permitted a program that is quite useless, and we might want to prevent this. There-
fore, we could place the restriction that the type defined in the datatype (in this case, �	��
�������������) should be different
from the type of the expression body � . This prevents programmers from inadvertently returning values that nobody
else can use.

Obviously, this restriction doesn’t reach far enough. Returning a vector of �	��
������������� values avoids the restric-
tion above, but the effect is the same: no part of the program outside the scope of the datatype can use these values.
So we may want a more stringent restriction: the type being different should not appear free in � .

This restriction may be overreaching, however. For instance, a programmer might define a new type, and return
a package (a vector, say) consisting of two values: an instance of the new type, and a procedure that accesses the
instances. For instance,

{datatype FamilyTree
{[unknown]
[person {name : string}

{mother : FamilyTree}
{father : FamilyTree}]}

{let {unknown-person : FamilyTree {unknown}}
{vector

{person "Mitochondrial Eve"
unknown-person
unknown-person}

{fun {v : FamilyTree} : string
{FamilyTree-cases v

[{unknown} {error ...}]
[{person n m f} n]}}}}}}

In this vector, the first value is an instance of �	��
�������������� , while the second value is a procedure of type

�	��
����������������� �"!�#%$�&
10Based on the preceding discussion, if the two cases needed to return different types of values, how would you address this need in a language

that enforced the type judgment above?
11Actually . . . that’s not quite true. You could use this to define the essence of a module or object system. These are called existential types. But

we won’t study them further in this course.

13

Other values, such as unknown-person, are safely hidden from access. If we lift the restriction of the previous
paragraph, this becomes a legal pair of values to return from an expression. Notice that the pair in effect form an
object: you can’t look into it, the only way to access it is with the “public” procedure. Indeed, this kind of type
definition sees use in defining object systems.

That said, we still don’t have a clear description of what restriction to affix on the type judgment for datatypes.
Modern programming languages address this quandary by affixing no restriction at all. Instead, they force all type
declarations to be at the “top” level. Consequently, no type name is ever unbound, so the issues of this section do not
arise.

8.3 Space for Datatype Variant Tags

One of the benefits programmers incur from using datatypes—beyond the error checking—is slightly better space
consumption. (Note: “better space consumption” = “using less space”.) Without datatypes, memory management
systems need tags that indicate both the type and the variant (such as ’num-empty and ’num-cons versus just empty
and cons), we now need to store only the variant. Why? Because the type checker statically ensures that we won’t pass
the wrong kind of value to procedures! Therefore, the run-time system needs to use only as many bits as are necessary
to distinguish between all the variants of a type, rather than all datatypes. Since the number of variants is usually quite
small, of the order of 3-4, the number of bits necessary for the tags is usually small also.

We are now taking a big risk, however. In the liberal tagging regime, where we use both type and variant tags, we
can be sure a program will never execute on the wrong kind of data. But if we switch to a more conservative tagging
regime—where we don’t store type tags also—we run a huge risk. If we perform an operation on a value of the wrong
type, we may completely destroy our data. For instance, suppose we can somehow pass a ���������
	�� to a procedure
expecting a ������������������ . If the FamilyTree-cases operation looks only at the variant bits, it could end up
accessing a numCons as if it were a person. But a numCons has only two fields; when the program accesses the
third field of this variant, it is essentially getting junk values. Therefore, we have to be very careful performing these
kinds of optimizations. How can we be sure they are safe?

9 Formalizing the Type Abstraction

We would like some kind of guarantee that the program will fail to exhibit certain errors (or, to put it more positively,
that it will execute without certain errors, such as inadvertently accessing a ����������	�� as if it were a �������������� ���). In
particular, we would like to know that the type system did indeed abstract over values: that running the type checker
correctly predicted (up to the limits of the abstraction) what the program would do. We call this property of a type
system type soundness12:

For all programs ! , if the type of ! is " , then ! will evaluate to a value that has type " .

Note that the statement of type soundness connects types with execution. This tells the user that the type system is not
some airy abstraction: what it predicts has bearing on “practice”, namely program execution.

We have to be somewhat careful about how we define type soundness. For instance, we say above (emphasis
added) “! will evaluate to a value such that . . . ”. But what if the program doesn’t terminate? So we must recast this
statement to say

For all programs ! , if the type of ! is " and ! evaluates to # , then #%$&" .13

Actually, this isn’t quite true either. What if the program executes an expression like (first empty)? There are a few
options open to the language designer:

' Return a value such as (1. We hope you cringe at this idea! It means a program that fails to check return values
everywhere will produce nonsensical results.

12The term “soundness” comes from logic, where it has a very specific meaning. Probably related is the British usage, found in writings of
authors like P.G. Wodehouse, of referring to a person as “a sound egg”.

13We could write this more explicitly as: ‘For all programs) , if the type checker assigns) the type * , and the semantics say that) evaluates to a
value + , then the type checker will also assign + the type * .”

14

� Diverge, i.e., go into an infinite loop. This approach is used by theoreticians (study the statement of type
soundness carefully and you can see why), but as software engineers we should soundly reject this.

� Raise an exception. This is the preferred modern solution.

Raising exceptions means the program does not terminate with a value, nor does it not terminate. So we have to refine
this statement still further:

For all programs � , if the type of � is � , � will, if it terminates, either evaluate to a value � such that ����� ,
or raise one of a well-defined set of exceptions.

The exceptions are a bit of a cop-out, because we can move arbitrarily many errors into that space. In Scheme, for
instance, the trivial type checker rejects no programs, and all errors fall under the exceptions. In contrast, researchers
work on very sophisticated languages where some traditional exceptions (such as violating array bounds) become type
errors. This last phrase of the type soundness statement gives lots of room for type system design.

As software engineers, we should care deeply about type soundness. To paraphrase Robin Milner, who first proved
a modern language’s soundness (specifically, ML),

Well-typed programs do not go wrong.

This is partially rhetorical, but there is an underlying truth here: a program that passes the type checker (and is thus
“well-typed”) absolutely cannot exhibit certain classes of mistakes. (The choice of the word “wrong” is definitely an
exaggeration, since it suggests that types ensure “correctness”. But we should not let this verbal quibble overshadow
Milner’s achievement.)

Why is type soundness not obvious? Consider the following simple program (the details of the numbers aren’t
relevant):

{if0 {+ 1 2}
{{fun {x : number} : number {+ 1 x}} 3}
{{fun {x : number} : number {+ 1 {+ 2 x}}} 1}}

During execution, the program will explore only one branch of the conditional:

1 �	��
 1 2 �	��
 2
+ 1 2 ���	��
 3

������
fun ... � 1 ��������
 4

if0

+ 1 2 � �

fun ... � 3 � �
fun ... � 1 �����	��
 4

but the type checker must explore both:

��� 1 ������������� ��� 2 �������������
��� + 1 2 ������������� �

�����
��� � fun ... � 3 �!�������������

�����
��� � fun ... � 1 �!�������������

��� if0
+ 1 2 � �

fun ... � 3 � �
fun ... � 1 ��������������� �

Furthermore, even for each expression, the proof trees in the semantics and the type world will be quite different. As
a result, it is far from obvious that the two systems will have any relationship in their answers. This is why a theorem
is not only necessary, but sometimes also difficult to prove.

Type soundness is, then, really a claim that the type system and run-time system (as represented by the semantics)
are in sync. The type system erects certain abstractions, and the theorem states that the run-time system mirrors those
abstractions. Most modern languages, like ML and Java, have this flavor.

In contrast, C and C++ do not have sound type systems. That is, the type system may define certain abstractions,
but the run-time system does not honor and protect these. (In C++ it sort of does for object types, but not for types
inherited from C.) This is a particularly insidious kind of language, because the static type system lulls the programmer
into thinking it will detect certain kinds of errors, but fails to deliver on that promise during execution.

Actually, the reality of C is much more complex: C has two different type systems. There is one type system (with
types such as int, double and even function types) at the level of the program, and a different type system, defined
solely by lengths of bitstrings, at the level of execution. This is a kind of “bait-and-switch” operation on the part of
the language. As a result, it isn’t even meaningful to talk about soundness for C, because the static types and dynamic

15

type representations simply don’t agree. Instead, the C run-time system simply interprets bit sequences according
to specified static types. (Procedures like printf are notorious at this: if you ask to print using the specifier %s,
printf will simply print a sequence of characters until it hits a null-teriminator: never mind that the value you were
pointing to was actually a double! This is of course why C is very powerful at low-level programming tasks, but how
often do you actually need such power?)

To summarize all this, we introduce the notion of type safety:

Type safety is the property that no primitive operation is ever applied to values of the wrong type.

By primitive operation we mean not only addition and so forth, but also procedure application. In short, a safe
language honors the abstraction boundaries it erects. Since abstractions are crucial for designing and maintaining
large systems, safety is a key software engineering attribute in a language. (Even most C++ libraries are safe, but
the problem is you have to be sure nobody in some legacy C library isn’t performing unsafe operations.) Using this
concept, we can construct the following table:

statically checked not statically checked
type safe ML, Java Scheme

type unsafe C, C++ assembly

The important thing to remember is, due to the Halting Problem, some checks simply can never be performed statically;
something must always be deferred to execution time. The trade-off in type design is to minimize the time and space
consumed by these objects during execution (and, for that matter, how many guarantees a type system can tractably
give a user)—in particular, in shuffling where the set of checked operations lies between static and dynamic checking.

So what is “strong typing”? As best as we can tell, this is a meaningless phrase, and people often use it in a
nonsensical fashion. To some it seems to mean “The language has a type checker”. To others it means “The language
is sound” (that is, the type checker and run-time system are related). To most, it seems to just mean, “A language
like Pascal, C or Java, related in a way I can’t quite make precise”. For amusement at cocktail parties, when someone
mentions the phrase “strongly typed”, ask them to define it and catch the errors and inconsistencies. And please, don’t
use the term yourself unless you want to sound poorly-trained and ignorant. Use the terminology of this course instead.

16

