
Mutation

sk, dbtucker, and kfisler

September 29, 2003

1 Background

Mutation allows a programmer to change the values associated with names. In other words, it endows a program
with state. Mutation (aka assignment) is a standard feature in most programming languages. However, the dialect of
Scheme we have used so far has, for the most part, been devoid of state. Indeed, some languages (such as Haskell)
have no direct mutation operations at all. It is, therefore,possible to design and use languages—even quite powerful
ones—that have no direct notion of state. Simply because this idea—that one can program without state—hasn’t
caught on in the mainstream is no reason to reject it.1

That said, state does have its place in computation. If we create programs to model the real world, then some of
those programs are going to have to accommodate the fact thatthere the real world has events that truly alter it. For
instance, cars really do consume fuel as they run, so a program that models a fuel tank needs to record changes in fuel
level.

Despite that, it makes sense to shirk state where possible because state makes it harder to reason about programs.
Once a language has mutable entities, it becomes necessary to talk about the programbefore a mutation happened and
after the mutation (i.e., the different “states” of the program).Consequently, it becomes much harder to determine
what a program actuallydoes, because any such answer becomes dependent onwhen one is asking: that is, they
become dependent on time.

Because of this complexity, programmers should use care when introducing state into their programs. A legitimate
use of state is when it models a real world entity that really is itself changing: that is, it models atemporal or time-
variant entity. Contrast that with a use of state in the following loop:

{
int i;
sum = 0;
for (i = 0; i < 100; i = i++)

sum += f(i);
}

There are two instances of state here (the mutation ofi and ofsum); neither of these is essential. Any other part of
the program that depends on the value ofsum remaining unchanged is going to break. You might argue that at least
the changes toi are innocuous, since the identifier is local to the block defined above; however, even that assumption
fails in a multi-threaded program, as most large programs tend to be today! Indeed, the use of state is the source of
most problems in multi-threaded software. In contrast, thefollowing program

(foldl + 0 (map f (build-list 99 add1)))

(where (build-list 99 add1) generates (list 0 . . . 99)) computes the same value, but is thread-safe by virtue of being
functional (mutation-free). Better still, a compiler thatcan be sure that this program will not be run in a multi-threaded
context can generate the mutation-based version from this specification.

1The family of languages we’ve studied so far have been inspired by the lambda calculi designed starting in the 1930s by Alonzo Church. He
initially conceived of them as purely theoretical models for use when exploring the limitations of computable functions. It appears, however, that
even back then, Church realized these functions may have broader use.

1



2 A Mutation Construct and its Behavior

Let’s add a set (assignment) construct to our language. For concrete syntax, we’ll use

{set <id> <RCFAE>}

as in

{set x {+ x 1}}

How should set expressions behave? Let’s work this out through a few examples:� {set x 5}

This should report an error, sincex is free.� {with {x 3} {set x 5}}

should return 5 (set expressions will return the value they just assigned to the variable, assuming that variable is
bound).� {with {x 3} {set x {+ 4 3}}}

should return 7.� {with {x 4} {with {y {set x 6}} x}}

should return 6.� {with {x 4}
{with {y x}

{with {z {set x 5}}
y}}}

should return 4. This is our first interesting semantic decision: should variables alias one another? In other
words, should changing the value of xalso change the value of y? We will adopt the interpretation that set
should only change the value of the named variable. (The Schemeset!operator implements this behavior, while
assignment in C would change the values of both x and y. This isbecause C implementspointer assignment
instead ofvariable assignment. As a result, aliasing can be a serious problem inC programs.)� {with {y 1}

{with {f {fun {x} {+ x y}}}
{with {z {set y 8}}

{f 5}}}}

This could return 6 or 13, depending upon whether the set affects the value ofx stored in the closure. Changes
to variable values should affect values stored in closures.

But wait – isn’t thisdynamic scoping, which we’ve decided is a Very Bad Thing? No, this isn’t dynamic scope.
Scoping determines whichbinding instance of an identifer each bound instance refers to. It does not govern
changes to the values of bound variables. Arguably, if you could capture variables in environments, but not
trust mutation to affect their values, mutation would become a much less useful construct in conjunction with
closures.

Now that we know how the set construct should behave, it’s time to extend the interpreter.

2



3 Implementing Mutation

If you recall our discussion from last week about syntactic-versus meta- interpreters, it is clear that we have two
options: we can implement set using Scheme’s assignment operators (a meta-interpreter), or we can implement it
without using assignment operators (a syntactic interpreter). In this case, even the meta-interpreter is instructive, so
we’ll do that one for now.

The first (easy) step is to extend the data defintion. For purposes of simplicity, we’ll add mutation to the FAE
language (ie, the language without recursion and assuming with is handled in the parser), calling the new language
FAE! (the ! indicates mutation, a convention adopted from Scheme).

(define-datatypeFAE! FAE!?
[num (n number?)]
[add (lhs FAE!?) (rhs FAE!?)]
[sub (lhs FAE!?) (rhs FAE!?)]
[id (name symbol?)]
[set (var symbol?) (new-val FAE!?)]
[fun (param symbol?) (body FAE!?)]
[app (fun-expr FAE!?) (arg-expr FAE!?)])

Extending the parser is easy, so we won’t review that here. Here’s the interpreter, ready for us to add the set
implementation:

;; interp :FAE! SubCache! FWA-value
;; evaluatesFAE! expressions by reducing them to their corresponding values
(define(interp expr sc)

(casesFAE! expr
[num (n) (numV n)]
[add (l r) (numV+ (interp l sc) (interp r sc))]
[sub (l r) (numV- (interp l sc) (interp r sc))]
[id (v) (lookup v sc)]
[set (var new-val-expr) . . . ]
[fun (param body)

(closureV param body sc)]
[app (fun-expr arg-expr)

(local ([define fun-val (interp fun-expr sc)]
[definearg-val (interp arg-expr sc)])

(casesFWA-value fun-val
[closureV (cl-param cl-body cl-cache) (interp cl-body

(aSub cl-param
arg-val
cl-cache))]

[else(error ’ interp " can only apply functions" )]))]))

Where do we currently associate values with identifiers? In the environment, here referred to assc (for “substitution
cache”). This suggests that the right way to implement mutation is to change/update the environment to reflect the
new value (remember that Scheme has an assignment operator calledset!). Let’s try the following code for set, along
with the associated helper function:

;; interp :FAE! SubCache! FWA-value
;; evaluatesFAE! expressions by reducing them to their corresponding values
(define(interp expr sc)

(casesFAE! expr
. . .
[set (var new-val-expr)

(local ([definenew-val (interp new-val-expr sc)])
(begin (set! sc (change-val var new-val sc))

3



new-val))]
))

;; change-val : symbol FWA-value SubCache! SubCache
;; replaces value for variable in cache with new value
(define(change-val name val sc)

(casesSubCache sc
[mtSub () (error ’change-val " no binding for identifier" )]
[aSub (bound-name bound-value rest-sc)

(if (symbol=? bound-name name)
(aSub bound-name val rest-sc)
(aSub bound-name bound-value (change-val name val rest-sc)))]))

If we run this on the example

{with {x 4} {with {y {set x 6}} x}}

(which we decided should return 6), we get 4. What happened?
Theset! changed the value ofsc that was current when we were processing the set expression.This does NOT

change the value ofsc in other calls tointerp. Specifically, we will callinterp once to evaluate the named-expr in the
inner with (the set), and then again to evaluate the body (thereference to x). Theset! changed the value ofsc within
the call tointerp on the named-expr. It does not change the value ofsc on the call tointerp on the body, so the update
to x isn’t visible.

The real problem here is that we tried to change the wrong thing. We want to change thecontents of the envi-
ronment (sc), not the environment itself. If we change the contents, then anywhere we refer to the same environment
structure sees the new contents. If we change whatsc refers to, that change will only be visible locally.

Scheme’sset! operator, like our set operator, expects a syntactic symbolas its first argument. This means that we
cannot useset! to alter the contents stored at variables. Recall from the recursion lecture, however, that we also saw
another Scheme assignment operator,set-box!. With set-box!, we changed the contents stored in the box, not the box
itself. Soset-box! seems better suited to our purposes.

3.1 Implementing Mutation with Scheme Boxes

How might we use boxes? We could change the environment so that each identifier maps to a box that contains a value,
rather than to a value. We can define environments to use boxesby changing the predicate that recognizes values in
theSubCache datatype:

(define-datatypeSubCache SubCache?
[mtSub]
[aSub (name symbol?)

(value (lambda (x) (and (box? x) (FWA-value? (unbox x)))))
(sc SubCache?)])

This change forces changes in the interpreter code. Specifically, anywhere we use or insert values into the envi-
ronment need to get modified. These happen in theid andapp cases.

;; interp :FAE! SubCache! FWA-value
;; evaluatesFAE! expressions by reducing them to their corresponding values
(define(interp expr sc)

(casesFAE! expr
[num (n) (numV n)]
[add (l r) (numV+ (interp l sc) (interp r sc))]
[sub (l r) (numV- (interp l sc) (interp r sc))]
[id (v) (unbox (lookup v sc))]
[set (var new-val-expr) . . . ]
[fun (param body)

4



(closureV param body sc)]
[app (fun-expr arg-expr)

(local ([define fun-val (interp fun-expr sc)]
[definearg-val (interp arg-expr sc)])

(casesFWA-value fun-val
[closureV (cl-param cl-body cl-cache) (interp cl-body

(aSub cl-param
(box arg-val)
cl-cache))]

[else(error ’ interp " can only apply functions" )]))]))

Now, we turn to implementing set. What should set do? To set the value of a variable, we need to change the value
stored in the box for that variable. This yields the following code:

;; interp :FAE! SubCache! FWA-value
;; evaluatesFAE! expressions by reducing them to their corresponding values
(define(interp expr sc)

(casesFAE! expr
[num (n) (numV n)]
[add (l r) (numV+ (interp l sc) (interp r sc))]
[sub (l r) (numV- (interp l sc) (interp r sc))]
[id (v) (unbox (lookup v sc))]
[set (var new-val-expr)

(local ([definevar-box (lookup var sc)]
[definenew-val (interp new-val-expr sc)])

(begin (set-box! var-box new-val)
new-val))]

[fun (param body)
(closureV param body sc)]

[app (fun-expr arg-expr)
(local ([define fun-val (interp fun-expr sc)]

[definearg-val (interp arg-expr sc)])
(casesFWA-value fun-val

[closureV (cl-param cl-body cl-cache) (interp cl-body
(aSub cl-param

(box arg-val)
cl-cache))]

[else(error ’ interp " can only apply functions" )]))]))

Notice that we change the box contents, but not the environment. We don’t need a separate traversal to find the
box, becauselookup already returns the box. Callingset-box! will change the contents of the box, and since the box is
still referred to in the environment, the changes will be visible in the environment.

It may be easier to see how this code is working through some simple diagrams. Within an environment, each
variable is associated with a box, and each box contains a value. Recall our example of

{with {x 4}
{with {y x}

{with {z {set x 5}}
y}}}

The environment is initially empty. After we bindx to 4, we have a picture like:

x ----> [a box] ----> 4

When we introduce the binding for y, we create a new box (in theapp case) and set its contents to be the same contents
as were in x’s box (from the id case). The picture therefore becomes:

5



x ----> [a box] -----> 4
ˆ
|

y ----> [another box] -|

The set tells us to eval the expression and change what x’s boxrefers to to the new contents:

----------> 5
|

x ----> [a box] 4
ˆ
|

y ----> [another box] -|

This illustrates how we achieve the desired semantics for set. Calling set on x doesn’t affecty because we change the
contents ofx’s box. If we wanted aliasing, the arrow fromy would have pointed to the box forx, not to a different
box with the same contents. Our other tricky example involved having sets affect the values stored in closures. This
diagram also illustrates how our code handles this case: theenvironment stores the boxes, so changes to the boxes are
picked up within the closures.

In programming language’s parlance, theenvironment actually refers to the mapping from identifiers to boxes. The
association between boxes and values is called astore. Introducing bindings affects the environment; mutation affects
the store.

6


