Mutation

sk, dbtucker, and kfisler

September 29, 2003

1 Background

Mutation allows a programmer to change the values assdcwith names. In other words, it endows a program
with state. Mutation (aka assignment) is a standard feature in mogfranaming languages. However, the dialect of
Scheme we have used so far has, for the most part, been ddwaime Indeed, some languages (such as Haskell)
have no direct mutation operations at all. It is, therefpassible to design and use languages—even quite powerful
ones—that have no direct notion of state. Simply becauseideia—that one can program without state—hasn't
caught on in the mainstream is no reason to rejéct it.

That said, state does have its place in computation. If watengrograms to model the real world, then some of
those programs are going to have to accommodate the fadhtivatthe real world has events that truly alter it. For
instance, cars really do consume fuel as they run, so a protipa models a fuel tank needs to record changes in fuel
level.

Despite that, it makes sense to shirk state where possib&ibe state makes it harder to reason about programs.
Once a language has mutable entities, it becomes necessally about the prografmefore a mutation happened and
after the mutation (i.e., the different “states” of the prograr@onsequently, it becomes much harder to determine
what a program actuallgoes, because any such answer becomes dependewh@mone is asking: that is, they
become dependent on time.

Because of this complexity, programmers should use care wi®ducing state into their programs. A legitimate
use of state is when it models a real world entity that realligself changing: that is, it modelstemporal or time-
variant entity. Contrast that with a use of state in the followingdoo

{ . .
int i;
sum = 0;
for (i = 0; i < 100; i = i++)
sum += f(i);
}

There are two instances of state here (the mutatianarfid ofsum); neither of these is essential. Any other part of
the program that depends on the valuewi remaining unchanged is going to break. You might argue thigeat

the changes tb are innocuous, since the identifier is local to the block defiabove; however, even that assumption
fails in a multi-threaded program, as most large programd te be today! Indeed, the use of state is the source of
most problems in multi-threaded software. In contrastféiewing program

(foldl + O (map f (build-list 99 add1)))

(where puild-list 99 addl) generateslist 0 ... 99)) computes the same value, but is thread-safe by virtueiafjbe
functional (mutation-free). Better still, a compiler theain be sure that this program will not be run in a multi-theshd
context can generate the mutation-based version frompleisification.

1The family of languages we've studied so far have been iedfiy the lambda calculi designed starting in the 1930s byZdcChurch. He
initially conceived of them as purely theoretical modelsdee when exploring the limitations of computable funcsiolt appears, however, that
even back then, Church realized these functions may haeeleraise.

2 A Mutation Construct and its Behavior

Let's add a set (assignment) construct to our language.dfarete syntax, we'll use

{set <id> <RCFAE>}

asin

{set x {+ x 1}}

How should set expressions behave? Let's work this out tiiraufew examples:

{set x 5}
This should report an error, singés free.

{with {x 3} {set x 5}}

should return 5 (set expressions will return the value thsygssigned to the variable, assuming that variable is
bound).

{with {x 3} {set x {+ 4 3}}}
should return 7.

{with {x 4} {with {y {set x 6}} x}}
should return 6.

{with {x 4}
{with {y x}
{with {z {set x 5}}
yh

should return 4. This is our first interesting semantic denisshould variables alias one another? In other
words, should changing the value ofakso change the value of y? We will adopt the interpretation tlet s
should only change the value of the named variable. (TherBebket! operator implements this behavior, while
assignment in C would change the values of both x and y. THieéause C implemenp®inter assignment
instead ofvariable assignment. As a result, aliasing can be a serious probl€wpiograms.)

{with {y 1}
{with {f {fun {x} {+ x y}}}
{with {z {set y 8}}
{f s

This could return 6 or 13, depending upon whether the settaffe value ok stored in the closure. Changes
to variable values should affect values stored in closures.

But wait — isn’t thisdynamic scoping, which we've decided is a Very Bad Thing? No, this isn’t dynastope.
Scoping determines whidbinding instance of an identifer each bound instance refers to. It does notigov
changes to the values of bound variables. Arguably, if yauldcgapture variables in environments, but not
trust mutation to affect their values, mutation would beearmuch less useful construct in conjunction with
closures.

Now that we know how the set construct should behave, it's tiomextend the interpreter.

3 Implementing Mutation

If you recall our discussion from last week about syntactersus meta- interpreters, it is clear that we have two
options: we can implement set using Scheme’s assignmemnatopg (a meta-interpreter), or we can implement it
without using assignment operators (a syntactic integpyetn this case, even the meta-interpreter is instructoe
we’ll do that one for now.

The first (easy) step is to extend the data defintion. For mapof simplicity, we’'ll add mutation to the FAE
language (ie, the language without recursion and assumithgisvhandled in the parser), calling the new language
FAE! (the ! indicates mutation, a convention adopted frorhe3ue).

(define-datatypeFAE! FAE!?
[num (n number?)]
[add (Ihs FAE!?) (rhs FAE!?)]
[sub (Ihs FAE!?) (rhs FAE!?)]
[id (name symbol ?)]
[set (var symbol?) (new-val FAE!?)]
[fun (param symbol ?) (body FAE!?)]
[app (fun-expr FAE!?) (arg-expr FAE!?)])

Extending the parser is easy, so we won't review that herere’si¢he interpreter, ready for us to add the set
implementation:

;; interp : FAE! SubCache — FWA-value
;; evaluate$AE! expressions by reducing them to their corresponding values
(define (interp expr sc)
(casedAE! expr

[num (n) (numV n)]

[add (I r) (numV+ (interp | sc) (interpr sc))]

[sub (I r) (numV- (interp | sc) (interp r sc))]

[id (v) (lookup Vv sC)]

[set (var new-val-expr) . ..]

[fun (param body)

(closureV param body sc)]
[app (fun-expr arg-expr)
(local ([definefun-val (interp fun-expr sc)]
[definearg-val (interp arg-expr sc)])
(cased=WA-value fun-val
[closureV (cl-param cl-body cl-cache) (interp cl-body
(aSub cl-param
arg-val
cl-cache))]
[else(error 'interp " can only apply functions")]))]))

Where do we currently associate values with identifiersAérenvironment, here referred tosagfor “substitution
cache”). This suggests that the right way to implement niarids to change/update the environment to reflect the
new value (remember that Scheme has an assignment opaabedrset!). Let’s try the following code for set, along
with the associated helper function:

;; interp : FAE! SubCache — FWA-value
;; evaluate$AE! expressions by reducing them to their corresponding values
(define (interp expr sc)

(casedFAE! expr

[set (var new-val-expr)
(local ([define new-val (interp new-val-expr sc)])
(begin (set! sc (change-val var new-val sc))

new-val))]

)

;; change-val : symbol FWA-value SubCacheSubCache
;; replaces value for variable in cache with new value
(define (change-val name val sc)
(casessubCache sc
[mtSub () (error 'change-val " no binding for identifier")]
[aSub (bound-name bound-val ue rest-sc)
(if (symbol="? bound-name name)
(aSub bound-name val rest-sc)
(aSub bound-name bound-value (change-val name val rest-sc)))]))

If we run this on the example
{with {x 4} {with {y {set x 6}} x}}

(which we decided should return 6), we get 4. What happened?

The set! changed the value at that was current when we were processing the set expresbioa.does NOT
change the value &t in other calls tanterp. Specifically, we will callinterp once to evaluate the named-expr in the
inner with (the set), and then again to evaluate the bodyréfezence to x). Theet! changed the value &t within
the call tointerp on the named-expr. It does not change the valwse oh the call tainterp on the body, so the update
to x isn’'t visible.

The real problem here is that we tried to change the wrongythifte want to change theontents of the envi-
ronment éc), not the environment itself. If we change the contents; tagywhere we refer to the same environment
structure sees the new contents. If we change wthiafers to, that change will only be visible locally.

Scheme’set! operator, like our set operator, expects a syntactic sylabdk first argument. This means that we
cannot useset! to alter the contents stored at variables. Recall from tharston lecture, however, that we also saw
another Scheme assignment operaggirbox!. With set-box!, we changed the contents stored in the box, not the box
itself. Soset-box! seems better suited to our purposes.

3.1 Implementing Mutation with Scheme Boxes

How might we use boxes? We could change the environment sedhbh identifier maps to a box that contains a value,
rather than to a value. We can define environments to use lgxelsanging the predicate that recognizes values in
the SubCache datatype:

(define-datatypeSubCache SubCache?
[mtSub]
[aSub (name symbol ?)
(value (lambda (x) (and (box? x) (FWA-value? (unbox x)))))
(sc SubCache?)])

This change forces changes in the interpreter code. Spabifianywhere we use or insert values into the envi-
ronment need to get modified. These happen indl@dapp cases.

;; interp : FAE! SubCache — FWA-value
;; evaluate$AE! expressions by reducing them to their corresponding values
(define (interp expr sc)
(casedFAE! expr
[num (n) (numV n)]
[add (I r) (numV+ (interp | sc) (interpr sc))]
[sub (I r) (numV- (interp | sc) (interp r sc))]
[id (v) (unbox (lookup v sC))]
[set (var new-val-expr) . ..]
[fun (param body)

(closureV param body sc)]
[app (fun-expr arg-expr)
(local ([definefun-val (interp fun-expr sc)]
[definearg-val (interp arg-expr sc)])
(cased=WA-value fun-val
[closureV (cl-param cl-body cl-cache) (interp cl-body
(aSub cl-param
(box arg-val)
cl-cache))]
[else(error 'interp " can only apply functions")]))]))

Now, we turn to implementing set. What should set do? To set#fue of a variable, we need to change the value
stored in the box for that variable. This yields the follogicode:

;; interp : FAE! SubCache — FWA-value
;; evaluate$AE! expressions by reducing them to their corresponding values
(define (interp expr sc)
(casedFAE! expr

[num (n) (numV n)]

[add (I r) (numV+ (interp | sc) (interp r sc))]

[sub (I r) (numv- (interp | sc) (interp r sc))]

[id (v) (unbox (lookup v c))]

[set (var new-val-expr)

(local ([definevar-box (lookup var sc)]
[define new-val (interp new-val-expr sc)])
(begin (set-box! var-box new-val)
new-val))]
[fun (param body)
(closureV param body sc)]
[app (fun-expr arg-expr)
(local ([definefun-val (interp fun-expr sc)]
[definearg-val (interp arg-expr sc)])
(cased=WA-value fun-val
[closureV (cl-param cl-body cl-cache) (interp cl-body
(aSub cl-param
(box arg-val)
cl-cache))]
[else(error 'interp " can only apply functions")]))]))

Notice that we change the box contents, but not the envirohnWe don’t need a separate traversal to find the
box, becaustookup already returns the box. Callirsgt-box! will change the contents of the box, and since the box is
still referred to in the environment, the changes will beblesin the environment.

It may be easier to see how this code is working through somelsidiagrams. Within an environment, each
variable is associated with a box, and each box containsug vBlecall our example of

{with {x 4}

{with {y x}
{with {z {set x 5}}

it

The environment is initially empty. After we bindto 4, we have a picture like:
X ----> [a box] ----> 4

When we introduce the binding for y, we create a new box (iraffiecase) and set its contents to be the same contents
as were in x's box (from the id case). The picture therefomobees:

X ----> [a box] ----- > 4

y ----> [another box] -|

The set tells us to eval the expression and change what x’safers to to the new contents:

X ----> [a box] 4

y ----> [another box] -|

This illustrates how we achieve the desired semantics toiGaling set on x doesn't affecty because we change the
contents ofx's box. If we wanted aliasing, the arrow fropwould have pointed to the box fog not to a different
box with the same contents. Our other tricky example inviblvaving sets affect the values stored in closures. This
diagram also illustrates how our code handles this caserthieonment stores the boxes, so changes to the boxes are
picked up within the closures.

In programming language’s parlance, #meironment actually refers to the mapping from identifiers to boxes. The
association between boxes and values is callgdra. Introducing bindings affects the environment; mutatitiects
the store.

