
Implementing Exceptions

Kathi Fisler, WPI�
October 6, 2003

1 Implementing Exceptions

Consider an example of using exceptions to terminate a product computation if one argument evaluates to 0. In Scheme
we might write this as follows:

(define(prod L)
(cond [(empty? L) 1]

[(cons? L) (cond [(eq?0 (first L)) (raise0)]
[else(� (first L) (prod (rest L)))])]))

(define(real-prod L)
(with-handlers ([(lambda (exn) (number? exn))

(lambda (exn) (printf "˜a" exn) 0)])
(prod L)))

Scheme’swith-handlers is fairly general because it allows a program to test whethera handler applies to a given
exception. Let’s implement a similar version that has the handler, but not the test for whether to use a handler. In
particular, we will introduce two new language constructs:raiseto throw exceptions andtry to specify where to catch
exceptions. If we also introduce list operatorskons,kar, andkdr corresponding tocons, first, andrest, we could write
theprod example in our concrete syntax as follows:

{rec {prod {fun L
{ifempty L

1
{if0 {kar L}

{raise 0}
{* {kar L} {prod {kdr L}}}}}}}

{with {real-prod {fun L {try {prod L}
{fun exn exn}}}}

{real-prod {kons 4 {kons 0 {kons 5 mt-list}}}}}}

How do we go about supporting this example in our language? Obviously, we need to addraise and try to the
abstract syntax, parser, and interpreter. How does the interpreter handle these? Considerraise– it needs to “return”
the raised value while indicating that the value is not a normal return value. To handle thie, we’ll introduce a new kind
of value into our language, calledexnV.

(define-datatypeFWA-value FWA-value?
[numV(n number?)]
[closureV(param symbol?)

(body FWAE?)
(cache SubCache?)]

[exnV(v FWA-value?)])�drawing on notes from sk/dbtucker, Brown CS

1



Now, every time we call interp, we must check whether the returned value is anexnVor a regular return value.
If it’s an exnV, we want to ignore the context and return it. Otherwise, we continue the computation as before. For
example, theaddcase would now look like:

[add(lhs rhs)
(let ([lv (interp lhs sc)])

(cases FWA-value lv
[exnV(v) lv]
[else(let ([rv (interp rhs sc)])

(cases FWA-value rv
[exnV(v) rv]
[else(numV+ lv rv)]))]))]

In thetry case, if the value ofinterpon the expression to try is an exception, invoke the associated handler on that
expressiom. Otherwise, just return the value normally.

2


