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1 Introduction and L ecture Goals

In formal verification, we want to prove that designs satisfy certain requirements. This requires that we agree on a
rigorous notation for expressing both designs and their requirements (aka properties). This lecture introduces you to
the models we will use for designs and the logic (language) we will use for properties.

2 A SimpleProblem

Consider a simple device whose interface consists of a single button. When someone releases the button, the device
beeps (or alternatively, says “hi”). What’s important about this device is that it only says “hi” once for each push of
the button. Such devices are useful in real systems; in an elevator, for example, even if someone holds the button down
for several seconds, we only want to summon the elevator once.

The desired requirements on our device are as follows:

o If someone releases the button, the device says hi
e The hi only happens for one unit of time

e The device produces at most one high per button push

2.1 Mod€dingthe Device

We can model the device using a simple state machine. The labels on the edges indicate the inputs that enable the
transitions. The edge marking “!push/hi” says “if push is false, take this transition and output hi”.
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This kind of state machine, where outputs are associated with edges, is called a Mealy machine. For purposes
of mativating verification and our requirements logic, it will help to write this machine such that all of the inputs
and outputs are associated with states rather than with transitions. Here is the equivalent state machine with state-
associated variables. In this version, all edges are implicitly labeled “true”. This machine is non-deterministic while
the original machine was deterministic.



2.2 Stating the Requirements Formally

To start thinking about a more formal language for expressing the requirements for our simple device, let’s unroll the
previous state machine into a tree showing all of the possible paths through a run of this device. Note that the tree is
necessarily infinite:

2.2.1 Stating Requirementsin Terms of the Tree

Let’s return to our stated requirements and try to rephrase them as statements about the tree:

o If someone releases the button, the device says hi
“At all states labeled but_dn and !push, hi is also true”

The phrase “states labeled but_dn and !push” captures the button release. Since the original requirement doesn’t
require the “hi” to happen at exactly the same time as the release, we can generalize this slightly to
“At all states labeled but_dn and !push, hi is eventually also true”

e The hi only happens for one unit of time
“In all states, if hi is true, then hi is false in the next state”

e The device produces at most one high per button push
“If hi is true, it isn’t true again until the button has been pushed”



2.2.2 Moving the Requirements Towar ds Propositional L ogic

Our goal is to uncover a formal logic for expressing requirements. The tree-based statements already suggest using
the standard operators from propositional logic. Let’s rewrite the tree-based versions with those operators first:

o Atall states labeled but_dn and !push, hi is eventually also true
At all states, but_dn A !push — eventually hi

o Inall states, if hi is true, then hi is false in the next state
In all states, hi — 'hi in the next state

e If hiistrue, it isn’t true again until the button has been pushed
hi — !hi until push

Now, what of our requirements is not expressed in formal logic? It’s phrases about states (“in all states™) and about
time (“eventually”, “next”, “until”). Thus, in order to turn these requirements fully into logic, we need to augment our
logic with notions of time.

2.2.3 Moving the Requirements Towards Temporal Logic

We will use the following symbols to stand for different time phrases:

“globally” | G
“eventually” | F
“next” X
“until” U

Let’s take another pass over our requirements, using these new operators in place of the temporal phrases:

¢ Atall states, but_dn A !push — eventually hi
G (but_dn A !push — F hi)

o Inall states, hi — 'hi in the next state
G (hi — X 'hi)

e hi — !hi until push
hi — [!hi U push]

These statements now look fully formal — all parts of the expressions are either operators in our logic or variables
in our design. There’s one small problem remaining though. Go back to the tree. Consider the statement “G (hi
— X Ihi)”. If I’m in a state where hi is true, do | need to look for !hi in some next state or in all next states? The
formal requirement isn’t clear, but that should be an important distinction. Therefore, we need to augment our formal
requirements slightly so that for every temporal operator, they indicate whether the formula should be true on all paths
starting from a state, or only on some of them. We will use A for “all paths” and E for “some path”.

Updating our requirements with path operators, we now get the following formal requirements:

e At all states, but_dn A !'push — eventually hi
AG (but_dn A !'push — AF hi)

o Inall states, hi — 'hi in the next state
AG (hi — AX hi)

e hi — !hi until push
hi — A['hi U push]
Notice that for until, the path quantifier goes outside the square brackets, not with the U.

This logic, including the propositional and temporal operators and path quantifiers is called CTL (for “computation
tree logic”).



2.24 Onelast Set of Changestothe Requirements

The current statements of the requirements are fully expressed in temporal logic. Here are two small critiques related
to writing good and useful properties though.

1. Ideally, requirements should be phrased in terms of the interface variables, not the internal states of the design.
This makes requirements reusable across several designs for the same device. Our first requirement:

AG (but_dn A !'push — AF hi)

refers to but_dn. How can we phrase this only in terms of push and hi? We used but_dn A !push to capture
a button release. We can also capture that by seeing a push in one state and !push in the next. We therefore
rewrite the first requirement as follows:

AG (push — AX (Ipush — AF hi))

2. Our third requirement, “hi — !hi until push” doesn’t say that it needs to be true in all states. As written, this
says that the requirement only has to hold once. It’s rare that you’ll have a property that only has to happen
once; expect your properties to always start with some temporal operator (and its path quantifier). We’ll edit the
property to require it to hold in all states:

AG(hi — A['hi U push])

2.25 TheFinal Requirements

Here’s the final set of requirement statements for our simple device:
e AG (push — AX ('push — AF hi))
e AG (hi — AX !hi)
e AG(hi — Al'hi U push])

3 WhereDoWe Go From Here?

This lecture gives you just the motivational flavor for CTL and some examples of its syntax. We still need to understand
the semantics of CTL (when a CTL formula is true of a tree) and the algorithm that checks whether a CTL formula is
true of a state machine.



