CS 525V: Modeling Environments and Protocols in SMV
due: Tuesday, Feb 12, 2001; in class (and electronically)

These exercises are intended to give you some practice modeling environments and protocols, stating properties of
protocols, and verifying more substantial designs with SMV. Turn in your solutions in accordance with the instructions
for documenting SMV assignments on the course assignments page.

Exercise 1 (An Exercise in CTL) It is easy to augment every state machine with an extra state that has the label “halt”
(which is not a label for any other state). The augmented machine transitions to this state when it is finished computing,
and remains in that state thereafter (assume we are not working with infinite-word automata in this problem, so
termination may occur). For this enhanced machine, you can now state and check the property “the program always
halts”.

1. Translate this property into CTL.

2. The ability to define and check this property seems to contradict the foundations of Computer Science.

(a) What is the apparent contradiction?

(b) Is this truly a contradiction or not? Justify your answer (in no more than a paragraph).

Exercise 2 (Island Tunnel Controller) Assume that we want to verify a controller for the traffic lights at a one lane
tunnel connecting the mainland to a small island as pictured below. There is a traffic light at each end of the tunnel;
there are also four sensors for detecting the presence of vehicles: one at tunnel entrance on the island side (IE), one
at tunnel exit on the island side (IX), one at tunnel entrance on the mainland side (ME), and one at tunnel exit on the
mainland side (MX).

B
MR e
MG /
P - MX

T — Tunnel ——
- L =

The tunnel controller does not limit the number of cars that it lets through while the light is green. However, the island
is small, so a maximum of 16 cars is allowed on the island at any time. The controller has been designed under the
assumption that once a car is waiting to use the tunnel, it keeps waiting until it gets to use the tunnel. The desired
properties of the controller are as follows:

1. The two lights are never green simultaneously.
2. Alight does not turn green until the tunnel is empty.
3. If a car is waiting to use the tunnel, the light on that side of the tunnel eventually turns green.

4. There are never more than 16 cars on the island.

File itlc.smv on the assignments page contains an SMV description of the Island Traffic Light Controller. Download
the file and do the following:

1. Write an environment model for the controller. Your model should generate the signals IE, IX, ME, and MX
(the sensors). Make sure what you generate makes sense; for example, it shouldn’t be possible for IX to be true
before ME was true. The controller interprets each sequence of 1s on these signals as corresponding to a single



vehicle. You should not change the file I have given you other than to add your model and a main module that
ties your model into the controller design. Turn in a copy of the SMV file with your model in it. Please provide
a comment explaining how your model works.

2. Verify the controller (use the above properties) under your environment model.
3. Does your model limit the number of cars that exist? If so, what limit does it impose and why?

4. Can you verify the following property using your model: “If a car is waiting to use the tunnel, it eventually
gets into the tunnel”? If you can verify this, provide the SPEC and the sanity checks. If you cannot, give an
explanation in English as to why. (Note: do not change your model to satisfy this property. Answer this question
based on whatever model you eventually used to verify the controller. I'm interested in how you evaluate your
particular choice of model for this question, not in whether your model satisfies the property.)

Exercise 3 (Clayton Tunnel) In class, we discussed the Clayton Tunnel accident and the (faulty) protocol that gave
rise to the accident. Do the following exercises using the protocol description handed out in class:

1. Develop an SMV model of the faulty protocol. Put it in a file called clayton-bad.smv.

2. Specify the desired property that no two trains should be in the tunnel on the same track at the same time. Check
the property against your protocol model (it should fail). Summarize the error trace in a comment.

3. Change the original protocol so that if multiple trains do get into the tunnel, future trains are prohibited from
entering until the tunnel is cleared. Create a file clayton-good.smv containing a model of your corrected protocol,
and check that it satisfies the new constraint.

Explain in English (in a long comment) how you changed the protocol. Also explain any assumptions that your
protocol makes (about timing, the behavior of the trains, etc). How general is your solution (i.e., does it only
work up to a certain number of trains getting stuck in the tunnel)?



