Converting Functions to Script Position

Kathi Fisler, WPI
February 24, 2004

We've seen that in order to write programs that behave ptppsrscripts, we need to move code around so that
scripts start the next part of the computation before theyiteate (or, put another way, so that no code depends upon
a value returned from a script). The last set of notes diditttistively. This set of notes shows you a step-by-step
method for converting non-web programs to web programs.

1 Script position

A call to a script function is irscript-position if the return value of the call is the return value of the exsgien or
function that contains it. This is another way of saying timadditional computation in the program relies on the value
of the call. Script-position is easiest to understand thhoexamples. Assume we have a script catkegiest-num:

1. In script position because the result of the call is thalted the whole expression (assuming this is the whole
program).
(request-num*“ Enter a num”)

2. Not in script position because the + uses the return value
(+ (request-num*“Enter a num’) 5)

3. In script position because the valuereduest-numis the value of the function that contains it.
(define(req regstr)
(request-numreqgstr))

4. In script position because the cond is the whole exprassid the answer of a cond clause is what the cond
returns.
(cond[(= 5 4) (request-num“Enter a num”)]
[else 7])

5. Not in script position because the + uses the return vdltreeccond.

(+ (cond[(= 5 4) (request-num*“Enter a num”)]
[else 7])
10)

6. Notin script position because the = needs the value aftiuest-num. The question position ofeondis never
in script position.
(cond[(= 5 (request-num“Enter a num”)) 9]
[elseT])

2 Moving Script Invocations to Script Position : Examples

To transform non-web programs to versions that are safert@nithe web, we need to first locate calls to script that
are not in script position and move them into script positiadjusting the rest of the code accordingly. Before we



write out the steps for doing this, let’s look at an examplec#ll the age-request program from the previous set of
notes. Here’s a similar version but using a more genergitsiennction to prompt for numbers:

;; request-num : strings number
;; prompts user for a number
(define (request-num promptstr)
(begin (printf promptstr)
(read)))

;; age-page-nonweb- void
;; displays ability to vote based on user’s age
(define (age-page-nonweb)
(local ((defineage (request-num“Enter your age: “)))
(cond [(>= age 18) (printf " Don’t forget to vote!" )]
[else (printf " You'll be able to vote in "a years" (— 18 age))])))

The call torequest-age-pageis not in script position irage-page-nonweb, so that call will need to move request-
age-page is to be usable as a script. Where can we move it? That callchhagpen before the rest of the code
executes, so let’s rip it out and move it to the front of dge-page-nonweb function, leaving a ??? marker to show
where we ripped it out:

;; age-page-nonweb- void
;; displays ability to vote based on user’s age
(define (age-page-nonweb)

(request-num“ Enter your age: “)

(local ((define age ??7?))
(cond [(>= age 18) (printf " Don't forget to vote!" )]
[else (printf " You'll be able to vote in "a years" (— 18 age))])))

Note that this isn't valid Scheme code — we have two exprassfter thalefinerather than one, and we have the ???
where we yanked out the old code. We can fix the ??? by turnintpit proper variable name and wrapping the code
that uses that name inlambda. We call the variable namigole since it fills a hole in the original code (where we
ripped the old code out).

;; age-page-nonweb-» void
;; displays ability to vote based on user’s age
(define (age-page-nonweb)

(request-num*“ Enter your age: “)

(lambda (hole)
(local ((define age hole))
(cond [(>= age 18) (printf " Don’t forget to vote!" )]
[else (printf " You'll be able to vote in "a years" (— 18 age))]))))

What is thislambda? This is the code that is left to run after we maguest-num — the same code that we put into
the submit function in the previous lecture. Recall that in that leetthe page that prompted for the number passed
the value it read teubmit. Here, we want to do the same thing — we senddhgbda (equivalent to the oldubmit to
request-num, andrequest-num passes its result to the lambda, thus plugging the “holdi thi¢ value of the expression
that we pulled out:

;; age-page-web- void
;; displays ability to vote based on user’s age
(define-script (age-page-web)
(request-num*“ Enter your age: “
(lambda (hole)
(local ((define age hole))



(cond [(>= age 18) (printf " Don't forget to vote!" )]
[else (printf " You'll be able to vote in "a years" (— 18 age))])))))

;; request-num : string (numbes void) — void
;; prompts user for a number
(define-script (request-num promptstr action)
(begin (printf promptstr)
(action (read))))

We call the new parameter tequest-num action to parallel the use of the “action” keyword in HTML forms (im a
HTM form, the action variable holds the name of the scriptath mext. We're giving a lambda instead of the name of
a function for now, but that difference is minor).

Running this version of the age program produces the sanevimetas the original, but now everything can run
as a script (meaning that it would work on the web). Noticerte contract omequest-num — rather than return a
number, it now takes a function that takes a number (its dldmevalue) and returns the same value asatieepage-
web program that calls it.

3 Moving Script Invocations to Script Position : Methodology

To convert a program written wittefineto one that will work withdefine-script, follow these steps on every function
fooscript that should work withdefine-script

1. Change the function name and add a parameter called gttimually rename fooscript to foo/web, just to
avoid name clashes with the non-web version).

2. Wherevefooscript returns an answer, pass that answer to action. If the botbosdript is acond, call action
on each answer in theond.

3. Find the script call that would happen first and move it ® filont of the expression (or enclosifagnbda —
never move a call outside oflambda).

4. Replace the expression you removed with a new variabler{ike hole). Be sure to use a different variable
name each time within the same function.

5. Wrap a flambda (hole) ...) around the original expression minus the part yougoutiut, and pass it as the
argument to the script call you moved to the front (this widtbme the value for the "action” argument).

6. Repeat from step 3 until all calls to scripts are in scrigifion.

Remember, the final program should behave the same way agdgh®@bprogram, so your transformation should
not change the order in which function calls or conditiomsevaluated.
Tomorrow, more examples ...



