
CS2135: What is a Programming Language?

Kathi Fisler, WPI

September 19, 2003

1 The Design and Programming Perspectives
To start to understand what comprises a programming language, let’s consider sample programs in four different
languages (see Figure 1). What differences do you observe?

1. Syntax: each uses rather different notations for writing down programs. Quite true, but syntax is only so
interesting; let’s look for deeper differences.

2. What kinds of data they inherently support. Fortran supported various kinds of numbers, C includes arrays,
while Scheme included lists (define-struct came in later), Java has classes.

3. Program organization techniques: The original Fortran didn’t even have functions or basic blocks of code.
Modern languages all provide functions, many now provide classes and objects, as well as larger organizational
constructs like packages and modules.

4. What kinds of control constructs the programmer can use to express computations. Fortran provided only
branches (conditionals) and goto-statements. Later languages provided loops, function calls, exceptions, and
other ways for programmers to control how a program executes.

5. What the language will do for the programmer. Languages like C require programmers to declare variables and
free memory. Languages like Scheme and Java use garbage collection (programs that reclaim memory when a
program is no longer using it). The different degrees of typechecking in modern languages (and there are lots of
interesting differences) also fall into this category.

Even though these samples are from large, mainstream languages, the same differences define the boundaries of
small, domain specific languages (such as those you implement to create a particular software system). Thus, our
quick contrast of these languages suggests the questions you need to ask when you’re about to define a new language:1

1. What kind of data is this language designed to process?

2. What operations can someone perform on the data?

3. What control operators do I need to sequence operations?

4. What work is the language trying to save the programmer from doing?

5. What decisions should be postponed until run-time?

1Side note: Languages are fascinating artifacts, because they are carefully engineered to tradeoff a range of concerns like the ones in this list
(while retaining efficiency and a host of other important features). If you’re interested in this material, you should take a more substantial and
upper-level course than 2135. For now, your best bet at WPI is the graduate course CS536 [Programming Language Design], which undergraduates
can count as a 4000-level class.

1

FORTRAN (mid 1950’s;1964)a

10 IF (X.GT.0.000001) GO TO 20
11 X = -X

IF (X.LT.0.000001) GO TO 50
20 IF (X*Y.LT.0.000001) GO TO 30

X = X*Y-Y
30 X = X+Y

...
50 CONTINUE

X = A
Y = B-A
GO TO 11
...

asample from slides for John Mitchell’s PL course at Stanford

Scheme (1975)

(define-struct boa (name length eats))

(define (all-boa-foods ani-lst)
(map boa-eats (filter boa? ani-lst)))

C (1978)a

#include <stdio.h>
#include <malloc.h>

/* Linked list structure */
struct c_linked_list
{

char data[20]; /* String */
struct c_linked_list *next;

};

/* Type def for linked list */
typedef struct c_linked_list link;

void deallocate_list(link *element) {
link *current;

/* Cycle through list */
while (element != NULL)
{

/* Copy pointer */
current = element;
/* Get next pointer */
element = (link *) element->next;
/* Free old pointer */
free (current);

}
}

aCode adapted from http://www.stat.cmu.edu/ hselt-
man/c/Reilly.html

Java (mid 1990s)a

class Body {
public long idNum;
public String name=’’<unnamed>’’;
public Body orbits = null ;
private static long nextID = 0;

Body() {
idnum = nextID++;

}
}

Body sun = new Body();
sun.idNum = Body.nextID++;
sun.name = ‘‘Sol’’;
sun.orbits = null ;

aCode from The Java Programming Language. Ken Arnold and
James Gosling. Addison Wesley 1996

Figure 1: Sample code fragments from four well-known programming languages.

2

2 The Implementation Perspective
The previous section gave a high-level view of what a language is: a collection of data, operations, control operators,
and other features that let us write programs. That doesn’t tell us how to implement a language though. What does it
mean to implement a programming language?

An implementation of a language allows someone to write and run programs in that language. If you want to
implement a language, you must provide:

1. A syntax for writing programs in the language, and

2. A program or process that executes programs written in that syntax.

The second requirement means that we need to be able to write programs (called interpreters) that take programs as
input and produce the results of running those programs as output. In order to “take a program as input”, we will need
data definitions for programs (if you don’t see why, try writing the contract for an interpreter). These data definitions
give us one (albeit clumsy) syntax for writing down programs. A real language implementation puts a cleaner syntax
before the data definition to make programs easier to write. In other words, a language implementation based on
interpreters has three stages:

Source Code Data Structure
for Programs

Parser
Running Program
Result of Interpreter

We will touch on both stages. We’ll start with the later stage (data definitions for languages and writing interpreters),
then we’ll discuss one technique (macros) to quickly create a cleaner syntax on top of those data definitions.

2.1 But What Is a Programming Language, Really?
More abstractly, languages are what we call abstractions: ways of seeing or organizing the world according to certain
patterns, so that a task becomes easier to carry out. More concretely, think about a while loop in C/C++. When you
write a while loop, you expect the machine to carry out certain tasks for you automatically: testing the termination
condition, running the loop code if the test passes, exiting the loop if it doesn’t, etc. When you write down a while
loop, you don’t write down all of these steps. The while loop is a common and useful pattern in programming that
the designers of C gave you in the form of a language construct. The while loop is an abstraction: a reusable pattern
where the language executes part of the pattern automatically, and you supply the parts that are different. You could
write down all of those steps manually, but then your program would be longer, harder to read, and more painful to
write and debug.

Similarly, map and filter from Scheme are abstractions: patterns of programs that share a common structure: you
write your code in terms of map and filter, and those constructs execute the common pattern. The main difference
between map/filter and while loops in this context is that you can define map/filter and similar functions in your
programs, while C builds while into the language, and doesn’t give you good support for defining your own loops.

Languages are collections of abstractions: collections of common patterns that programmers can combine
into working programs.

When you implement a language, you implement those patterns (abstractions) that make up the language. You provide
programmers with the tools they need to express the computations they want to perform. One task of a language
designer is therefore to understand what programmers want to express (according to questions like those presented in
Section 1), and then to implement the abstractions (using interpreters or compilers) corresponding to those patterns so
someone can program in the new set of constructs.

2.2 Interpreters Versus Compilers
The interpreter-based strategy outlined previously is one way to implement a language. Another strategy is to trans-
late programs in your new language into programs in an existing (target) language, then use the tools for executing
programs in the target language to run your program. This approach is called compilation. If we wanted to compile

3

Scheme, for example, we would need to write a program (a compiler) that translates Scheme into some known lan-
guage (such as C). Another compiler would translate C into assembly, and so forth. The code for implementing a
C-style while-loop is in the compiler that takes C-code down to Assembly language. At the lowest level in this hier-
archy, an interpreter runs the final program to produce an answer. The following hierarchies show common strategies
for implementing Scheme and Java systems:

(1s and 0s)
Machine Code

Scheme

C

Java

Machine Code
(1s and 0s)

Java Virtual
Machine (JVM)

Assembly
Language

Assembly
Language

Each arrow represents a different program that translates from one language into the next. If there are multiple
arrows from one box to the next, it means that there are multiple (architecture-specific) versions of the lower language,
so multiple translators get used.2

3 A Concrete Example: Implementing a Slideshow Package
Let’s implement a slide-presentation system, similar in spirit to Powerpoint. The web site has a sample Powerpoint
presentation for those of you who aren’t familiar with it. What would a naïve implementation of the slideshow look
like (using a simple, text-based interface)? Look at Figure 2: what’s wrong with this implementation (aside from the
unappealing text-based interface)?

� The programmer manually inserts the begin/end of slide lines each time.

� The programmer has to explicitly add the await-click commands, even though those are standard between slides.

� The programmer has to call print-string all the time, even though all the slide data are strings.

� There’s little here that the programmer could reuse when writing another slideshow presentation.

This example is crying out for a language for writing slideshows, and for an interpreter to run those slideshows.
To start defining the language, we need to answer the five questions from Section 1:

1. Slides are the data. Slides have titles and content. The content may be a bunch of text, or lists that are either
bulleted or numbered. We may also have overlays, which are slides that sit on top of other slides, so that we can
present content in stages.

2. The main operation on slides seems to be displaying them on the screen.

3. We sequence slides by putting them in some (linear) order.

4. The language should save the programmer from waiting for clicks to move between slides, from printing titles
manually, and from manually specifying/tracking item numbers in itemized lists.

5. It’s not clear at the moment what decisions should be postponed until run-time, so we’ll come back to that one
later.

2One of the technical advances that Java contributes is allowing richer sets of language constructs (a richer abstraction) before the code specializes
per architecture. This picture enables the “write once, run anywhere” goal behind Java’s design.

4

;; Stage -1 : Powerpoint without a language

;; print-string : string � void
;; prints string and a newline to the screen
(define (print-string str)

(printf "˜a˜n" str))

;; await-click : � void
;; mimics a mouse click by waiting for the user to type a character
(define (await-click) (read))

(begin
(print-string "——————————")
(print-string "Hand Evals in DrScheme")
(print-string "Hand evaluation helps you learn how Scheme reduces programs to values")
(print-string "——————————")
(await-click)
(print-string "——————————")
(print-string "Example 1")
(print-string "(� (� 2 3) 6)")
(await-click)
(print-string "(� 6 6)")
(await-click)
(print-string "12")
(print-string "——————————")
(await-click)
(print-string "——————————")
(print-string "Summary: How to Hand Eval")
(print-string "Find the innermost expression")
(await-click)
(print-string "Evaluate one step")
(await-click)
(print-string "Repeat until have a value")
(print-string "——————————")
)

Figure 2: A naïve implementation of a slideshow.

5

Let’s start by implementing a simple prototype of our slideshow system. A prototype is a working version of a
scaled-down version of the system. The prototype lets us figure out how to implement the key concepts, and we’ll
build on those concepts later as we refine the language. For our first prototype, we’ll implement basic sequences of
slides (no overlays), and use a simple text display rather than a fancier graphics display.

3.1 The First Prototype
Note: Refer to the code posted with the notes on the class website for a more complete picture of the finished code.

Recall that implementing a language requires us to write programs that take programs in our language as input and
execute those programs. In other words, we’re writing a program

;; slideshow-implementation : slideshow-program � ???
;; executes a program in our (new) slideshow language

What is a slideshow-program? From this contract, it looks like something we need a define-struct for (since it’s
certainly not built-in to Scheme. That’s exactly right – we need a data definition for writing down programs, then (and
only then!) we’ll need a program for implementing the slideshow programs.

Let’s start by considering how we model slideshow programs as data:

3.2 Modeling the Data
We’ve already observed that our data consists of slides, so we need a data definition for slides:

;; a slide is a (make-slide string slide-body)
(define-struct slide (title body))

;; a slide-body is either
;; - a string (paragraph), or
;; - a (make-pointlist list[string] boolean)
(define-struct pointlist (points numbered?))

;; Examples
(make-slide

"Hand Evals in DrScheme"
"Hand evaluation helps you learn how Scheme reduces programs to values")

(make-slide
"Example 1"
(make-pointlist (list "(� (� 2 3) 6)" "(� 6 6)" "12") false))

3.3 Modeling the Operations
At this stage, we are not implementing the operations, we are instead trying to represent programs as data, so we can
later write an implementation. We must develop a data definition for the set of operations in our language. Right now,
we only have a display operation (though we might have more later). Let’s write a data definition for operations (here
called commands):

;; A cmd is
;; - (make-display slide)
(define-struct display (slide))

;; Example
(make-display

(make-slide
"Hand Evals in DrScheme"
"Hand evaluation helps you learn how Scheme reduces programs to values"))

6

Remember, this isn’t trying to implement the display operation: it’s merely giving us a way to write down that
someone wants to perform a display operation on a slide when we run the program. There are two different times here:
writing the program, and running the program (you’re quite familiar with this distinction in practice, but it does often
seem odd to handle both in code when you start implementing languages).

3.4 Modeling Programs
In the slideshow example, a “program” is just a talk, which is itself a sequence of operations on slides. We need
to model talks as data. The word “sequence” suggests lists. So, we’ll view talks/programs as containing lists of
operations:

;; A talk is a (make-talk list[cmd])
(define-struct talk (cmds))

;; A program is a talk

Now that we’ve modeled programs, operations, control, and data through data definitions, we are ready to write
our first program (even though we can’t run it yet):

(define talk1
(let ([intro-slide

(make-slide
"Hand Evals in DrScheme"
"Hand evaluation helps you learn how Scheme reduces programs to values")]

[arith-eg-slide
(make-slide
"Example 1"
(make-pointlist (list "(� (� 2 3) 6)" "(� 6 6)" "12") false))]

[func-eg-slide
(make-slide
"Example 2"
(make-pointlist (list "(define (foo x) (� x 3))" "(� (foo 5) 4)" "(� (� 5 3) 4)" "(� 8 4)"

"32") false))]
[summary-slide
(make-slide
"Summary: How to Hand Eval"
(make-pointlist (list "Find the innermost expression"

"Evaluate one step"
"Repeat until have a value")

true))])
(make-talk
(list (make-display intro-slide)

(make-display arith-eg-slide)
(make-display func-eg-slide)
(make-display summary-slide)))))

This code uses let instead of local. let is a bit more compact because you don’t need to write define on each case.
The let code is as if you wrote (define intro-slide (make-slide . . .)). We use local definitions here to keep the slides
internal to the talk (otherwise, we’d prevent ourselves from defining another summary-slide for a different talk.

Next class, we’ll implement the prototype.

7

