CS2135: Recap on Languages

Kathi Fisler, WPI
February 16, 2004

Now that we've spent several lectures on languages and efiered a couple, let's take stock and remind ourselves
how we got here and why.

1 Inthe Beginning ...

On the first day of the course, as well as in your early programgmexperience, we wrote simple expressions that were
identical minus a simple piece of information (like a numbesymbol). We created functions with parameters to let
us reuse the common code:

(12 (/ 3 8))
(x 15.60 (/ 3 8))

(define (share-cost price
(* price (/ 3 8)))

Functions are perhaps the most fundamental form of reuseglhas the simplest to understand.

2 Map and Filter

Map and filter took us to a new level of reuse. Previously, wedusinctions to allow reuse over data like numbers,
strings, and lists. Map and filter came about because wezeekhat code is often identical except for sdfimection
(instead of some data). With map and filter, we explored takimctions as parameters. It's the same basic idea that
you initially learned for parameters and functions, but tW@u can pass as a parameter got more interesting. As a
result, the reuse is more powerful.

;; boa-foods : list{boa}- list[symbol]
;; return list of foods eaten by boas in input list
(define (all-boa-foods alobp
(cond [(empty? alopempty
[(cons? alob (cons(boa-food(first alob))
(all-boa-foodgrest aloh))]))

;; tiger-lengths : list[tiger}- listfnumber]
;; return list of lengths of all tigers
(define (all-tiger-lengths alo}
(cond [(empty? alotempty
[(cons? alo} (cons(tiger-length(first alot))
(all-tiger-lengths(rest alo)))]))

;; map : (alpha -¢, beta) list[alpha} list[beta]
;; return list of results of running function on each itemmnput list
(define(map f als}

(cond [(empty? alstempty



[(cons? alsk (cons(f (first als)
(map f(rest als}))]))

(define (all-boa-foods alob
(map boa-food alo))

(define (all-tiger-lengths alo}
(map tiger-length alg)

3 Languages

The nave versions of the powerpoint and tax programs showed yathen example of condensing and reusing com-
mon code. Here, we collapsed common sequences of instmadtito commands and used them to build a language.
As a reminder, we started with the followingime powerpoint program:
(begin
(print-string " ")
(print-string" Hand Evals in DrScheme")
(print-string " Hand evaluation helps you learn how Scheme reduces programs to values")

(print-string " ")
(await-click)
(print-string™” ")

(print-string" Example 1")
(print-string” (+ (x 2 3) 6)")
(print-string" (+ 6 6)")
(print-string" 12" )

(print-string " ")
(await-click)
(print-string" ")

(print-string" Summary: How to Hand Eval")
(print-string" Find the innermost expression™)
(print-string " Evaluate one step")
(print-string " Repeat until have a value")
(print-string" ")

We marked off the common patterns, turned them into co,,aardbwrote an interpreter to run those commands and
reproduce our slideshow program. At that point, we had défankanguage.

But what was special about this case? Why did powerpointgj&tcca language, while map and filter were just
helper functions? The process of creating language comsnanéis very similar to the process of creating helper
functions. We could have just mad@ant-slidehelper function for the common code to get rid of the repmtit\Why
did we get into all of this languages stuff?

A couple of differences appear in the code that results frarating helper functions versus defining languages.

e When we create helper functions, we may chasmaeof our code (the part that used the common pattern), but
the rest of it stays the same. When we create a languageuellgratl of the code migrates to the new language.

e As we add more to a program that uses helper functions, we albgirty functions defined in that file. As we
add code to a program that uses a language, we only use theumasf that language.

These observations suggest that the difference between ytheve made a language versus just made helper func-
tions has to do with whether you restrict subsequent codseoniy the helper functions (aka the language). Why
would anyone want to do this though?

10ne benefit is that once we have a language, we can reimpléheelsinguage/interpreter in any language we choose. Sonmvstag with a
Scheme version of a powerpoint program and migrate thatiptowerpoint language implemented in C.



The Real Point of a Language

Languages allow us to restrict what a programmer can do.
A programmer working in our powerpoint language is giveritéd powers: to create slides with certain attributes and
to display them. We control how the slides display and wherirterpreter should wait for clicks. Imagine that instead
of creating a language, we had just added a bunch of helpetiduns to the powerpoint file and told the programmer
to work with those. The programmer could now create powetgmiograms that wait for multiple clicks per slide,
or display slides upside down, or gosh knows what else. Byngithe programmer a restricted set of commands, we
control what programs the programmer can write at all.

Why is this a good thing? Don'’t we want programmers to have ashnflexibility as possible? Why shouldn’t
a programmer be allowed to expect two clicks if she wants to8gfamming is all about freedom of expression
and control of the machine (that's one reason why it's so nfucf). Restrictions in languages are clearly anti-
programmers, no?

All languages embody some restrictions. Should the powetpoogrammer be able to crash the machine? Edit
your password file? Take down the network? Of course not. €akquestion (and perhaps the hardest thing in
real language design) is choosing tiight set of restrictions. If you recall our comparison of langemn the first
languages lecture, we showed how Fortran allowed gotorséatts but later languages restrict how to move around
programs; C++ allows the programmer access to pointer&theme does not. Every language is a combination of
what they help a programmer to do, and what they disallowérpttocess.

Since this is an intro class, we're not getting into the tagibow to decide which restrictions to put in a language
(this is a fascinating topic though). We're simply learnthg mechanics of creating languages and writing interpgete
to run languages. You can build on this background to redtnguages as you see fit.

4 Summary

At a core level, much of this course is about one topic: cngatvays to reuse common code. Now that we're in the
languages portions, we're just doing more complex andéstarg forms of reuse, but it is all about reuse. If you're
feeling lost in this section of the course, see if you cantifigwhat is getting reused in the exercises that we do. If
you don'’t see that, come ask one of us for help.



