CS2135, A-01

Final Exam

Problem | Points | Score
1 15
Name: 2 25
3 30
4 30
Total

You have 50 minutes to complete the problems on the following pages. There should be sufficient space
provided for your answers. You do not need to show templates, but you may receive partial credit if you do.
You also do not need to show test cases or examples of data models, but you may develop them if they will
help you write the programs.

Your programs may contain only the following Scheme syntax:
define define-struct cond else lambda local begin set!

and the following primitive operations:
empty? cons? cons first rest car cdr list map filter
number? + — x / = < > <= >= zero?

symbol? symbol=% equal?
boolean? and or not

and the functions introduced by define-struct.

You may, of course, use whatever constants are necessary.

1. (15 points) Consider the following definition of a class for squares:

;; make-square : number — square-object

;; takes the length of a side of the square as input

(define make-square

(lambda (initlen)
(local [(define sidelen initlen)]
(lambda (service)
(cond [(symbol=? service ’get-sidelen) sidelen]

[(symbol=? service ’area)
(lambda () (x sidelen sidelen))]
[(symbol=? service ’resize)
(lambda (newlen) (set! sidelen newlen))])))))

Add a service smaller-than? to the square class that compares the square to another (second) square
and returns a boolean (true if the square is smaller than the second square and false otherwise). For
full credit,

e add the service without editing the given square class, and

e reuse the existing get-sidelen service in the existing class (without copying the existing code)

[If you can not do the problem under these restrictions, you may do it by editing or copying the above
code for half credit.]

2. (25 points) Convert the following program into CPS. If the converted version is similar to the original,
you may either write your edits directly on the original function text (without recopying it), or cross-out
and edit individual lines. You do not need to copy the documentation.

Assume that printf, length, filter and the usual primitives are built-in. You may also assume that
prompt-read-many/k exists (ie, you do not need to provide a definition for prompt-read-many/k).

;; display-overdue : symbol list['y or 'n] — void
;; prints a message saying how many 'n are in the project status list
(define display-overdue
(lambda (name proj-status)
(printf "~ais behind on ~a projects “n" name (count-overdue proj-status))))

;; count-overdue : list[’y or 'n] — number
;; counts how many times 'n is in the input list
(define count-overdue
(lambda (anslist)
(length (filter (lambda (ans) (symbol=? ans 'n)) anslist))))

;; count-missing-projs : symbol symbol — void
;; prompts for info on which projects student should have completed based on class-year
(define count-missing-projs
(lambda (name class-year)
(display-overdue
name (cond [(symbol=¥¢ class-year ’senior)
(prompt-read-many (list "Suff Done? [y/n]" "IQP Done? [y/n]" "MQP Done? [y/n]"))]
[(symbol=? class-year ’junior)
(prompt-read-many (list "Suff Done? [y/n]" "IQP Done? [y/n]"))]
[(symbol=? class-year ’sophomore) (prompt-read-many (list "Suff Done? [y/n]"))]
[else empty))))

3. (30 points) Missing familiar-looking loops, a friend proposed the following for-loop for Scheme:
;; for-loop : number function — void
;; takes a number and a function and runs the function the indicated number of times
(define for-loop
(local [(define indez 1)]
(lambda (high-num f)
(cond [(> index high-num) (set! indezx 1)]
[else (begin
(f index)
(set! inder (addl index))
(for-loop high-num f))]))))

(a) (5 points) Your friend wants to use for-loop to write a function print-to-n that consumes a number
n and prints out the numbers from 0 to n. For example, print-to-n should behave as follows:

> (print-to-n 3)
0123

Indicate what the following proposed definition of print-to-n produces and explain why it does or
does not implement the desired behavior.

(define (print-to-n n)
(local ([define indez 0])
(for-loop n (lambda (num) (printf "~a "n" indezx)))))

(b) (10 points) Is your friend’s use of set! justified in the for-loop code? Why or why not?

(¢) (15 points) Write a version of for-loop that does not use set!. You may write a helper function
or change the contract of for-loop, but your new for-loop function must still take the function to
run in the loop as a parameter.

4. (30 points) Let’s evolve our current Curly language to provide constructs for monitoring program
behavior. Specifically, we want to add constructs for

e determining how many function calls have been made (call-count)

e resetting the function call count (reset-count)

Call-count will return the number of function calls that have been made since the count was last reset.
Reset-count will reset the count and return 0. For example, here is how these expressions should
evaluate:

(eval (make-call-count))

>
0
> (eval (make-plus (make-apply (make-proc 'x (make-var ’x)) 6) 4))
1

o

(eval (make-call-count))

>
1
> (eval (make-plus (make-apply (make-proc 'x (make-var 'x)) 6) 7))
1

w

(eval (make-call-count))

(eval (make-plus (make-call-count) 5))

>

2

>

7

> (ewal (make-reset-count))
0

> (eval (make-call-count))
0

The revised data definition and new define-structs are as follows:

An expr is one of

- a number,

- (make-var symbol)

- (make-proc symbol expr) (define-struct call-count ())

- (make-plus expr expr) (define-struct reset-count ())
- (make-apply expr expr)
- (make-call-count)
- (make-reset-count)

Our previous interpreter appears on the next page (with clauses for the new cases). Fill in the cases
for call-count? and reset-count? and make any other edits necessary to implement the behavior shown
in the above examples. Your solution may use global variables. Do not copy the existing code
— simply show where any edits should go, or cross-out and rewrite individual lines that
must change.

;; eval : expr — value
;; evaluates the expression and returns its answer

(define (eval an-exp)

(cond [(number? an-exp) an-exrp]
[(var? an-exp) (error ’eval (format "Unbound variable "a" (var-name an-ezp)))]
[(proc? an-ezrp) an-exp)
[(plus? an-exp) (+ (eval (plus-left an-exp))

(eval (plus-right an-exp)))]
[(apply? an-exp)
(local [(define aproc (eval (apply-func an-ezp)))]
(eval (subst (proc-body aproc)
(proc-param aproc)
(eval (apply-arg an-ezp)))))]
[(call-count? an-ezp) ...]

[(reset-count? an-exp) ...]))

