
CS2135: Macros for Monitors

Kathi Fisler, WPI

February 16, 2004

1 A Non-Graphical Notation for Monitors

In the previous lecture, we developed two data definitions for monitors, hand-translated the traffic light example into
both of those definitions, and wrote the code necessary to runthe monitors on inputs. As with our slideshow and
animation language examples, we would like to have a nicer notation for writing down monitors and use macros to
convert that notation into our desired data definitions.

Here’s a possible ascii notation for monitors. We want to use� > to depict the arrows and : to separate a state
name from its transitions.

(defineTL-monitor
(monitor is-red

(is-red : (green -> is-green)
(red -> is-red))

(is-green :(yellow -> is-yellow)
(green -> is-green))

(is-yellow :(red -> is-red)
(yellow -> is-yellow))))

Our goal is to write thedefine-syntaxexpression that will let us use this notation. We will do thisexercise twice, once
for each data definition we developed for monitors.

Converting to the Structure-Based Language

Recall that our representation ofTL-monitor in the structures-based language looked as follows [note: I’ve changed
the name of the structure tomonitor-structfrom monitor to avoid a naming conflict between the structure and the
macro in Scheme.]

(defineTL-monitor
(make-monitor-struct

’ is-red
(list (make-state’ is-red (list (make-trans’ red ’ is-red)

(make-trans’green ’ is-green)))
(make-state’ is-green (list (make-trans’green ’ is-green)

(make-trans’yellow ’ is-yellow)))
(make-state’ is-yellow (list (make-trans’yellow ’ is-yellow)

(make-trans’ red ’ is-red))))))

We want to write the monitor macro that to produce this code.
First, let’s write the macro up to, but not including, the input pattern:

(define-syntax monitor
(syntax-rules(-> :)

))

1



Recall that the items in parentheses aftersyntax-rules are the keywords for the macro. We treat both -¿ and : as
keywords because we expect them to appear literally in the input pattern (rather than wanting to treat them as variable
names).

Next, let’s add the input pattern:

(define-syntax monitor
(syntax-rules(-> :)

[(monitor initname
(curr-state: (label -> next-state) . . . )
. . . )<FILL IN>]))

Notice that this much of the macro definition will be the same across both language data definitions; only the output
patterns will change between the two macros.

In this case, the output pattern seems pretty easy based on the target definition ofTL-monitor:

(define-syntax monitor
(syntax-rules(-> :)

[(monitor initname
(curr-state: (label -> next-state) . . . )
. . . )

(make-monitor-struct
initname
(list (make-state curr-state(list (make-trans label next-state)

. . . ))
. . . ))]))

If we put both the macro definition and the macro use in a file andtry to run it, what happens? We get an error that
is-red is undefined. What do you think happened?

Notice that when we wrote the definition ofTL-monitorby hand (without the macro), we used symbols foris-red,
etc. Nowhere in the macro do we see the tick-marks that denotesymbols. As a result, Scheme is trying to treatis-red
as an identifier rather than a symbol, hence the error.

We could fix this by using the tick-marks when we use the macro,as follows:

(defineTL-monitor
(monitor ’ is-red

(’ is-red : (’green -> ’ is-green)
(’ red -> ’ is-red))

(’ is-green : (’yellow -> ’ is-yellow)
(’green -> ’ is-green))

(’ is-yellow : (’ red -> ’ is-red))))

That’s pretty ugly though, certainly not as nice as the version without the tick-marks (and it exposes Scheme features
in the syntax, which we want to avoid).

Alternatively, we can put the tick-marks into the macro definition:

(define-syntax monitor
(syntax-rules(-> :)

[(monitor initname
(curr-state: (label -> next-state) . . . )
. . . )

(make-monitor-struct
’ initname
(list (make-state’curr-state (list (make-trans’ label ’next-state)

. . . ))
. . . ))]))

2



Note that we don’t put the tick-marks into the input pattern (since they aren’t in the input), only in the output pattern.
If you’re thinking carefully about this, you’re probably wondering how on earth this could work – wouldn’t the

tick-marks cause the macro to put the symbols like ’initname and ’curr-state into the output? After all, in our work
with Scheme to date, the tick-marks prevented something from being evaluated! The real answer is that the tick-
mark is actually an interesting Scheme construct namedquote that can do a lot more than what we’ve done with it
in this course. As always, stop by my office sometime if you want to know more, or look upquote in the DrScheme
HelpDesk.

Converting to the Function-Based Language

Now let’s write the macro to create the function-based language for automata. We start with the same header informa-
tion and input pattern:

(define-syntax monitor
(syntax-rules(-> :)

[(monitor initname
(curr-state: (label -> next-state) . . . )
. . . )<FILL IN>]))

How do we fill in the output pattern? As a reminder, here’s the version we created by hand:

(defineTL-monitor
(local [(define(is-red samples)

(cond [(empty? samples) ’okay]
[(cons? samples)
(cond [(symbol=? (first samples) ’ red) (is-red (rest samples))]

[(symbol=? (first samples) ’green) (is-green(rest samples))]
[else’error])]))

(define(is-yellow samples)
(cond [(empty? samples) ’okay]

[(cons? samples)
(cond [(symbol=? (first samples) ’yellow) (is-yellow(rest samples))]

[(symbol=? (first samples) ’ red) (is-red (rest samples))]
[else’error])]))

(define(is-green samples)
(cond [(empty? samples) ’okay]

[(cons? samples)
(cond [(symbol=? (first samples) ’green) (is-green(rest samples))]

[(symbol=? (first samples) ’yellow) (is-yellow(rest samples))]
[else’error])]))]

is-red))

To develop the output pattern, figure out what code from the original uses information that is in the macro’s input pat-
tern. All other information must appear verbatim in the output pattern (minus accounting for the ellipses). References
to is-red, is-green, is-yellow, red, yellow, andgreenwill be replaced with the names from the input pattern. Everything
else goes into the code as is:

(define-syntax monitor
(syntax-rules(-> :)

[(monitor initname
(curr-state: (label -> next-state) . . . )
. . . )

(local [(define(curr-state samples)
(cond [(empty? samples) ’okay]

[else

3



(cond [(symbol=? (first samples) ’ label) (next-state(rest samples))]
. . .
[else’error])]))

. . . ]
initname)]))

Look at where we usedquote (the tick-marks) in this macro as compared to the macro in thestructure version. In
the structure version, we wanted to turn the uses ofcurr-state, label, andnext-statein the output pattern into symbols.
In this macro, only thelabel uses get quoted;curr-stateandnext-stateare left as identifiers. Why? Because now
curr-stateandnext-state areidentifiers – they are variable names defined in theletrec statement. What do you think
would happen if we did put the quote on them? We’d get an error that we tried to use a symbol as a function (when we
call next-stateas a function).

With this example, we’re getting into some pretty neat uses of macros. We’re able to use non-alpha-numeric
characters as keywords in macros, which can help a lot with defining custom notations. Our notations are looking less
and less Scheme-like (are youreally still seeing the parens as much as you were when we started with Scheme?), and
we’re writing more sophisticated output patterns. More importantly, though, with the function-based representation
of monitors, we’ve done something fascinating with macros:we used a macro to write a program. You can think of
macros as programs that generate programs! This is where thereal power of macros comes in (and where Scheme
macros are significantly different from the macros you may know from other languages).

Once you see how to write macros like themonitor macro, you’re well on your way to really using Scheme to
help you define custom languages.

4


