
CS2135, C02

Midterm Exam

Name:

Problem Points Score
1 30
2 30
3 40

Total

You have 50 minutes to complete the problems on the following pages. There should be sufficient space provided for
your answers. You do not need to show templates, but you may receive partial credit if you do. You also do not need
to show test cases or examples of data models, but you may develop them if they will help you write the programs.

Your programs may contain only the following Scheme syntax:

define define-struct cond else lambda

and the following primitive operations:

empty? cons? cons first rest list map filter
number?

�����
/ ���	�	�
���
� zero?

symbol? symbol � ? equal?
boolean? and or not

and the functions introduced by define-struct.

You may, of course, use whatever constants are necessary.

1

1. (30 points) For each of the following programs, either

� Rewrite it with map and/or filter if appropriate (ie, if the body of the rewritten function could be a call to
map or filter), or
� Explain why map and filter aren’t appropriate (based on their purposes, contracts, internal structure, etc).

(a) (10 points)
;; insert : number list[number] � list[number]
;; inserts number into position in list of sorted (increasing) numbers
(define (insert anum alon)

(cond [(empty? alon) (cons anum empty)]
[(cons? alon)
(cond [(� anum (first alon))

(insert anum (rest alon))]
[else (cons anum alon)])]))

2

(b) (10 points)
;; flip : list[symbol] � list[symbol]
;; changes all ’left in list to ’right and vice-versa, leaving other symbols intact
(define (flip alos)

(cond [(empty? alos) empty]
[(cons? alos)
(cons (cond [(symbol � ? (first alos) ’right) ’left]

[(symbol � ? (first alos) ’left) ’right]
[else (first alos)])

(flip (rest alos)))]))
Example: (flip (list ’left ’straight ’right)) produces (list ’right ’straight ’left)

(c) (10 points)
;; product : list[number] � number
;; computes the product of a list of numbers
(define (product alon)

(cond [(empty? alon) 1]
[(cons? alon)
(
�

(first alon) (product (rest alon)))]))

3

2. (30 points) WPI has decided to automate housing selection. Rather than having students gather in person to
select rooms, students will submit a function that takes the number of rooms available in each dorm and returns
the name of the dorm they want a room in. For this problem, we’ll assume all rooms are doubles in Morgan and
Daniels.

A housing request consists of the names of two students (to share a double) and a function that takes two
numbers (the number of rooms available in Morgan and Daniels) and returns either ’morgan or ’daniels. The
following data definition captures a housing request:

A room-request is a
(make-request symbol symbol (number number - � symbol))

(define-struct request (student1 student2 choose))

A dorm assignment lists two students and the dorm in which they will live. Here is the data definition for a room
assignment:

A dorm-asgmt is a
(make-asgmt symbol symbol symbol)

(define-struct asgmt (student1 student2 dorm))

(a) (10 points) Beavis and Butthead would choose a room in Daniels if there were at least two rooms open
there (so their friends, drawing right after them, could also live there); otherwise, they’ll take Morgan.
Write the make-request example that captures this request.

4

(b) (20 points) Write a program draw-rooms that consumes two numbers (the available rooms in Morgan and
Daniels, respectively) and a list of requests and returns a list of dorm assignments. The program should
process the requests in order and return the list of resulting dorm assignments. Processing a request should
decrease the number of available rooms in the appropriate dorm. Assume there are enough rooms that
every request will yield either ’morgan or ’daniels.

For example, if BB-request refers to your answer from part (a) (and assuming the same request were
processed twice):

(draw-rooms 9 1 (list BB-request))
� (list (make-asgmt ’Beavis ’Butthead ’morgan)

(draw-rooms 9 2 (list BB-request BB-request))
� (list (make-asgmt ’Beavis ’Butthead ’daniels)

(make-asgmt ’Beavis ’Butthead ’morgan))

5

3. (40 points) Consider the following definition of ancestor trees:

An ftree is one of
- ’unknown,
- (make-person symbol ftree free)

(define-struct person (name father mother))

A medical researcher wants to augment and use this model to study disease patterns in families.

(a) (5 points) Edit the data definition to store two additional pieces of information per person: blood type (one
of A, B, AB, or O) and one major illness (such as diabetes, cancer, etc). Make sure you also add or edit the
define-structs as necessary (you may edit the existing data definition text; you do not need to recopy it).

(b) (15 points) Our researcher has a theory that all people with diabetes have blood type A (in logic terms,
diabetes � blood-type is A). In other words, every person either has both diabetes and blood type A, or
they don’t have diabetes. Write a program diabetes-A? that consumes a family tree and returns a boolean
indicating whether all people in the family tree satisfy the theory. (diabetes-A? ’unknown) should return
true.

6

(c) (15 points) Our researcher wants to write programs to test several theories (like diabetes-A?) on family
trees. All of these programs check a predicate against each person in the tree and return true if everyone
satisfies the predicate (in each program, ’unknown returns true). Write a program test-theory that con-
sumes a function from ftree (person or ’unknown) to boolean and a ftree and returns true if the function
holds of every person in the tree.

;; test-theory : (ftree � bool) ftree � boolean
;; determine whether each person in tree satisfies given predicate

(d) (5 points) Rewrite your diabetes-A? function using test-theory.

7

