
CS2135: Recursive Macros

Kathi Fisler, WPI

February 5, 2003

1 Multi-Argument Or

We talked about how to define or as a macro, and why it needed to be defined as a macro instead of as a function. The
question arose about how to define an or macro that accepts arbitrary numbers of arguments. Scheme or can take any
number of arguments. Here are some examples:

� (or ( � 3 2))
false

� (or ( � 3 4) ( � 6 9) ( � 2 7))
true

Try writing a macro for or that takes an arbitrary number of arguments. Hint: think of the multiple-case timecond
macro from the previous set of notes. Also think about recursion.

(define-syntax myor
(syntax-rules ()

[(myor e1) e1]
[(myor e1 e2 . . . )
(cond [e1 true]

[else (myor e2 . . . )])]))

Here’s the macro. What do the two patterns do? The first is like the base case in the recursion – it gives a concrete
answer on a specific number of arguments. The second is the recursive case. As in the recursions we’ve written before,
we reduce the number of arguments on the recursive call.

2 Map

Since we’ve written a recursive macro for or, why don’t we write one for map? How about this?

(define-syntax mymap
(syntax-rules ()

[(mymap func lst)
(cond [(empty? lst) empty]

[(cons? lst)
(cons (func (first lst))

(mymap func (rest lst)))])]))

If we test this macro, we find we go into an infinite loop. Why? Recursion worked for or, so why doesn’t it work
for map?

There’s a big difference between the two macros. With myor, notice that the recursion has a base case as one of the
patterns in the macro. In mymap, there’s only one case. Macro-expansion works by replacing every use of a macro
with its output pattern until no more uses of macros remain. Furthermore, since macro-expansion takes place without
evaluating expressions (the whole point of having them!), there’s no way to hit a base case within the expanded code.
In other words, macro-expansion of a call to mymap proceeds in several steps, ad infinitum:

1



(mymap square (list 1 2 3))

� (cond [(empty? (list 1 2 3)) empty]
[(cons? (list 1 2 3))
(cons (square (first (list 1 2 3)))

(mymap square (rest (list 1 2 3))))])

� (cond [(empty? (list 1 2 3)) empty]
[(cons? (list 1 2 3))
(cons (square (first (list 1 2 3)))

(cond [(empty? (rest (list 1 2 3))) empty]
[(cons? (rest (list 1 2 3)))
(cons (square (first (rest (list 1 2 3))))

(mymap square (rest (rest (list 1 2 3)))))]))])

� . . .

Without evaluating the lists, there’s no way to stop the expansion, hence the infinite loop.

3 Summary

Macros can be recursive, but the base case must be one of the (multiple) patterns, not buried within one of the output
patterns. This is necessary for macro expansion to terminate.

2


