
CS2135: Let, Letrec, and Scoping

Kathi Fisler, WPI

February 14, 2003

1 Let and Letrec : An Introduction to Scope

The monitor example introduced you to an important languages concept that we touched on very briefly a couple of
weeks ago when we introduced lambda: scoping. When you introduce a new identifier (parameter or variable) in a
program, scoping determines where that identifier is visible. Alternatively phrased, it determines which expressions
can “see” (or refer to the value of) that identifier.

Whenever you learn a new language construct that can introduce identifiers, you should ask what scope those
identifiers have (in other words, where are they visible). So far, we know four constructs that introduce new identifiers:
define, lambda, let and letrec. Let’s precisely define the scoping rules for each of these:

� When you define a function (lambda), its parameters are visible in the body of the function, but not outside the
function.

� When you introduce a variable through let, it is visible in the body of the let, but not in the expressions associated
with other identifiers in the same let. So, for example, if you wrote

(let ([x 4]
[y (

�
x 1)])

(� x y))

you’d get an undefined identifier error on x in (
�

x 1) because x and y are only visible in (� x y).

� When you introduce a variable through letrec, it is visible in the body of the letrec AND in all of the expressions
associated with identifiers. This visibility supports defining recursive functions (among other things), which you
cannot do with let. So, for example

(letrec ([x 4]
[y (

�
x 1)])

(� x y))

returns 20 (without generating a syntax error). The following example also runs without error
(letrec ([g (lambda (y) (f y))]

[f (lambda (x) (
�

x 3))])
(g 2))

and returns 5. Note that in letrec, g can refer to f even though f appears to be defined after g.

� When you introduce a variable through define, as in (define talk1 (make-talk . . .)), the variable is visible every-
where in the program (i.e., it’s a global variable).

What About Naming Conflicts?

Scoping tells you where a name is visible, it also tells you how to resolve naming conflicts between identifiers.
Consider the following code:

(define (num-func anum)
(let ([anum 3])

1

(
�

anum 5)))

(num-func 1)

What does this code return? We should get either 6 or 8, depending upon which value of anum gets used in (
�

anum
5). Scheme (indeed, all modern languages) uses a policy called static scoping: use the nearest enclosing definition
in the text of the program. In this case, the anum from let is closer to the (

�
anum 5) than the parameter anum, so

Scheme uses the let definition (the value 3).
In general, we define nearest by working backwards through the nested expressions until we find a definition of

the needed identifier. For example, the following code

(define (num-func2 anum)
(� (let ([anum 3]) (

�
anum 1))

(let ([anum 4]) (� anum 2))
anum))

(num-func2 5)

returns 40. Why? This expression is equivalent to

(define (num-func2 anum)
(� 4

2
anum))

(num-func2 5)

In each let, the value of anum is only used to compute the expression in the body of the let; the rest of the expression
can’t see those local definitions of anum. For the third argument to the multiplication, the nearest enclosing definition
of anum comes from the parameter. The crucial term here is enclosing: the let statements don’t contain the use of
anum in the multiplication within their parentheses. Staying within parentheses, the parameter is the nearest anum to
that third argument.

2

