
CS2135
Lectures on Script Position
(aka: the “web compiler”)

Recap: Web (CGI) scripts
• In the CGI protocol, there is no way to send the result

of a script back to the page that invoked it. Each script
must generate a new page to continue the computation.

(define (adder-page)
(begin

(prompt-for-num1)
(prompt-for-num2)
(display-sum (+ (read) (read)))))

(define-script (adder-page)
(prompt-for-num1)
(submit1))

(define-script (submit1)
(prompt-for-num2)
(submit2 (read)))

(define-script (submit2 n1)
(display-sum (+ n1 (read))))

Text version: input commands
return to give args to +

Web version: input commands
require calls to scripts

(web)(text)

Recap: Web (CGI) scripts
• To use CGI, programmers are forced to structure their

code (scripts) in a particular way [functions that handle
input can’t return to a pending operation]

(define (adder-page)
(begin

(prompt-for-num1)
(prompt-for-num2)
(printf “~a” (+ (read) (read)))))

(define-script (adder-page)
(prompt-for-num1)
(submit1))

(define-script (submit1)
(prompt-for-num2)
(submit2 (read)))

(define-script (submit2 n1)
(printf “~a” (+ n1 (read))))

Text version: input commands
return to give args to +

Web version: input commands
require calls to scripts

(web)(text)

Why does the difference in
structure matter?

• What if a programmer needed two versions of
the program (one for the web, one for another
interface) – can’t reuse the code …

• … and would have to maintain two versions.
• Better programming tools exist for testing and

debugging non-web versions.
• Difference complicates the programmers’ job

How does our CS training tell us
to address this problem?

Implement a program to convert programs to the web!

• Programmers write the text-I/O version
• Conversion program produces the web scripts
• When program changes, edit the text version

and re-generate the scripts

This set of lectures will teach you how the
conversion to web-format works

Why are We Covering This?
• Web conversion illustrates the kinds of programs

we can write to process other programs –
programs that process other programs is one of
the themes of this course.

• Shows you how programming languages and
programming technology can impact a real-world
application area such as the web

• The “web conversion” method actually applies to
many other language issues

On to the conversion details …

Terminology: Script Position
A function call is in script-position in an
expression if the value returned from the call is
the value of the entire expression. Examples:

• (f 4) is not in script position in (+ (f 4) 3)
[because the + needs the value of (f 4)]

• The call to f in (f (+ 4 3)) is in script position
[because the result from f is the result of the
whole expression]

Terminology: Script Position
A function call is in script-position in an
expression if the value returned from the call is
the value of the entire expression. Examples:

• (g 6) is not in script position in (f (g 6))
• the call to f is in script position in (f (g 6))
• (f 6) is in script position in

(cond [(= n 0) 1]
[else (f 6)])

because (f 6) is the value of the cond (if else case is
taken).

Try it: which calls are in script
position?

• (* (f 3) (g 5))

• (cond [(foo 4) (bar 6)]
[else (baz 7)])

• (f (cond [(= x 0) (h 2)]
[else 9]))

Try it: which calls are in script
position?

• (* (f 3) (g 5))

• (cond [(foo 4) (bar 6)]
[else (baz 7)])

• (f (cond [(= x 0) (h 2)]
[else 9]))

Call to h is not because
f is waiting for the
result of the cond

Call to * is not because
only care about user-

defined functions
Call to foo is not

because result of cond
is result of answers

Try it: which calls are in script
position?

(define (adder-page)
(begin

(prompt-for-num1)
(prompt-for-num2)
(display-sum (+ (read) (read)))))

(text) (define-script (adder-page)
(prompt-for-num1)
(submit1))

(define-script (submit1)
(prompt-for-num2)
(submit2 (read)))

(define-script (submit2 n1)
(display-sum (+ n1 (read))))

(web)

Try it: which calls are in script
position?

(define (adder-page)
(begin

(prompt-for-num1)
(prompt-for-num2)
(display-sum (+ (read) (read)))))

(define-script (adder-page)
(prompt-for-num1)
(submit1))

(define-script (submit1)
(prompt-for-num2)
(submit2 (read)))

(define-script (submit2 n1)
(display-sum (+ n1 (read))))

(web)(text)

Not surprisingly, the calls in
the web version are all in
script position (unlike reads)

What’s Important About Script
Position?

• Calls that are in script position have the key
characteristic of calls to web scripts: no pending
computation is waiting for the result of the call

• Calls in script position can therefore be turned
directly into invocations of web scripts

Task: We need to move all calls to user-defined functions
that are not in script position into script position

Moving Calls to Script Position
We can move calls to script position by following a simple
sequence of steps. (We’ll use the name “script” in functions
that should be called only in script position)

(define (fscript x) (+ x 3))
(* (fscript 5) 2) [returns 16]

Moving Calls to Script Position
We can move calls to script position by following a simple
sequence of steps. (We’ll use the name “script” in functions
that should be called only in script position)

(define (fscript x) (+ x 3))
(* (fscript 5) 2) [returns 16]

Call is not in script position – must move

Where would this call need to go to be in script position?

Must be at the front (nothing waiting for its result)

Moving Calls to Script Position
We can move calls to script position by following a simple
sequence of steps. (We’ll use the name “script” in functions
that should be called only in script position)

(define (fscript x) (+ x 3))
(* (fscript 5) 2) [returns 16]

Must be at the front (nothing waiting for its result)

(define (fscript x) (+ x 3))
(fscript 5) (* 2) [returns 16]

But this leaves a hole in the original expression!

Moving Calls to Script Position
We can move calls to script position by following a simple
sequence of steps. (We’ll use the name “script” in functions
that should be called only in script position)

(define (fscript x) (+ x 3))
(* (fscript 5) 2) [returns 16]

Must be at the front (nothing waiting for its result)

(define (fscript x) (+ x 3))
(fscript 5) (* hole 2) [returns 16]

But this leaves a hole in the original expression!
… so introduce a variable for the “hole”

Moving Calls to Script Position
Now we have the following (not syntactically correct)
Scheme expression. Let’s fix it to return the right answer.

(define (fscript x) (+ x 3))
(fscript 5) (* hole 2) [should return 16]

First, we need a definition for hole. Introduce a lambda:

(define (fscript x) (+ x 3))
(fscript 5) (lambda (hole) (* hole 2))

[should return 16]

Moving Calls to Script Position
Now we need to create one expression out of the call to
fscript and the lambda that will result in 16.

(define (fscript x) (+ x 3))
(fscript 5) (lambda (hole) (* hole 2)) [should return 16]

What is the relationship between (fscript 5) and hole?
• The result from (fscript 5) needs to eventually plug the

hole (since we created the hole when we moved
(fscript 5) to the front).

• But, we need to leave fscript at the front of the
expression (so it stays in script position)

Moving Calls to Script Position
Now we need to create one expression out of the call to
fscript and the lambda that will result in 16.

We could edit the contract on fscript so that it takes a
function (action) telling it what to do with its result …

(define (fscript x) (+ x 3))
(fscript 5) (lambda (hole) (* hole 2)) [should return 16]

(define (fscript x action) (action (+ x 3)))
(fscript 5) (lambda (hole) (* hole 2)) [should return 16]

Now, just pass the lambda expression as the action to fscript!

Moving Calls to Script Position
Now we need to create one expression out of the call to
fscript and the lambda that will result in 16.

We could edit the contract on fscript so that it takes a
function (action) telling it what to do with its result …

(define (fscript x) (+ x 3))
(fscript 5) (lambda (hole) (* hole 2)) [should return 16]

(define (fscript x action) (action (+ x 3)))
(fscript 5 (lambda (hole) (* hole 2))) [should return 16]

Now, just pass the lambda expression as the action to fscript!

Recap: Result of First Example
We started with:

(define (fscript x) (+ x 3))
(* (fscript 5) 2) [returns 16]

And ended up with:

(define (fscript x action) (action (+ x 3)))
(fscript 5 (lambda (hole) (* hole 2)))

Does the new expression also return 16? Yes!

One Minor Edit …
To avoid confusing the original fscript with the converted
one, we’ll adopt the convention of adding /web to the name
of the function when we add the action parameter:

(define (fscript/web x action) (action (+ x 3)))
(fscript/web 5 (lambda (hole) (* hole 2)))

Note: the parameter name “action” is suggestive, because
the function you pass to action behaves like the script
that you specify in the action tag in an html form …

Summary: How to Convert a Function
FooScript to FooScript/web

• Change the name and add a parameter called action

• Wherever FooScript returns a value, FooScript/Web
should pass that value to action. If the body of
FooScript is a cond, call action on each answer.

(define (myscript x)
(cond [(= x 4) 5]

[else 7]))

(define (myscript/web x action)
(cond [(= x 4) (action 5)]

[else (action 7)]))

Summary: How to Move Calls into
Script Position

• Find the script call that would happen first and move it to
the front of the expression (or enclosing lambda)

• Replace the expression you moved with a variable (like
hole – use different names each time you move a call
within the same original expression though)

• Wrap a (lambda (hole) …) around the original expression
(minus the part you pulled out) and pass this lambda
expression as an argument to the script call that you
moved to the front.

• Repeat until all script calls are in script position

Time to Try It! – Exercise 1

(define (fscript x y)
(cond [(= x y) 6]

[else (- y x)]))

(* (+ 4 5) (fscript 10 12))

Move all calls to the scripts into script position (and
modify the scripts as needed):

(fscript\web 10 12
(lambda (hole)

(* (+ 4 5) hole)))

(define (fscript\web x y action)
(cond [(= x y) (action 6)]

[else (action (- y x))]))

Time to Try It! – Exercise 2
(define (gscript x) (* x 6))
(define (hscript y) (+ y 5))

(+ 4 (gscript (hscript 3)))

(define (gscript/web x action)
(action (* x 6))

(define (hscript/web y action)
(action (+ y 5))

Move the call to hscript first because it executes first
(hscript/web 3 (lambda (box1)

(+ 4 (gscript box1))))

Time to Try It! – Exercise 2
(define (gscript x) (* x 6))
(define (hscript y) (+ y 5))

(+ 4 (gscript (hscript 3)))

(define (gscript/web x action)
(action (* x 6))

(define (hscript/web y action)
(action (+ y 5))

Now move call to gscript, but leave it inside the lambda
(hscript/web 3 (lambda (box1)

(+ 4 (gscript box1))))

Time to Try It! – Exercise 2
(define (gscript x) (* x 6))
(define (hscript y) (+ y 5))

(+ 4 (gscript (hscript 3)))

(define (gscript/web x action)
(action (* x 6))

(define (hscript/web y action)
(action (+ y 5))

Now move call to gscript, but leave it inside the lambda
(hscript/web 3 (lambda (box1)

(gscript box1
(lambda (box2)

(+ 4 box2)))))
The call to gscript must remain in

the lambda so that hscript runs first

Time to Try It! – Exercise 3
(output "The answer is "

(+ (prompt-read-script "First number: “)
(prompt-read-script "Second number: ")))

Which call goes to the outside first?

(prompt-read-script
“First number: ”
(lambda (box1)

(output “The answer is”
(+ box1 (prompt-read-script “Second number: “)))))

Now continue with the second prompt call …

Time to Try It! – Exercise 3
(output "The answer is "

(+ (prompt-read-script "First number: “)
(prompt-read-script "Second number: ")))

Now continue with the second prompt call …

(prompt-read-script
“First number: ”
(lambda (box1)

(prompt-read-script
“Second number: “
(lambda (box2) (output (+ box1 box2))))))

If you name these lambdas,
you get code that looks like

the web version of the
project!

Time to Try It! – Exercise 4
(define (countdown n)

(cond [(zero? n) (output "Liftoff!")]
[else (begin

(prompt-read-script (format "t - ~a and counting“ n))
(countdown (- n 1)))]))

(countdown (prompt-read-script "Time left on launch pad: "))

Think of this as a program for NASA: as countdown
progresses, the program produces a progress report and

expects the user to give some input to continue the countdown
(the program ignores the content of the input though).

First, convert the expression that calls countdown

Time to Try It! – Exercise 4
(define (countdown n)

(cond [(zero? n) (output "Liftoff!")]
[else (begin

(prompt-read-script (format "t - ~a and counting“ n))
(countdown (- n 1)))]))

(countdown (prompt-read-script "Time left on launch pad: "))

First, convert the expression that calls countdown

(prompt-read/web “Time left on launch pad: “
(lambda (box) (countdown box)))

Time to Try It! – Exercise 4
(define (countdown n)

(cond [(zero? n) (output "Liftoff!")]
[else (begin

(prompt-read-script (format "t - ~a and counting“ n))
(countdown (- n 1)))]))

(countdown (prompt-read-script "Time left on launch pad: "))

Now, move the call to prompt-read-script inside countdown

Where should this call move to? [think about it]

It should stay inside the else: remember, cond answers are in
script position and we shouldn’t call the script if n is zero

Time to Try It! – Exercise 4
(define (countdown n)

(cond [(zero? n) (output "Liftoff!")]
[else (begin

(prompt-read-script (format "t - ~a and counting“ n))
(countdown (- n 1)))]))

(countdown (prompt-read-script "Time left on launch pad: "))

(define (countdown n)
(cond [(zero? n) (output "Liftoff!")]

[else (prompt-read/web
(format "t - ~a and counting" n)
(lambda (box1)

(begin box1 (countdown (- n 1)))))]))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

(output "Total delay: " (count-delay-script))

Here, the
script is

recursive

This program asks a user to keep entering numbers at a prompt.
When the user enters zero, the program prints the sum and stops.

Once again, convert the output expression first …

(count-delay/web (lambda (box)
(output “Total delay: “ box)))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

Now, rename count-delay-script and add action parameter

(define (count-delay/web action)
(let ([new-delay (prompt-read-script "Delay: ")])

(cond [(= 0 new-delay) 0]
[else (+ new-delay (count-delay-script))])))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

Next, send cond answers to action …

(define (count-delay/web action)
(let ([new-delay (prompt-read-script "Delay: ")])

(cond [(= 0 new-delay) 0]
[else (+ new-delay (count-delay-script))])))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

Next, send cond answers to action …

(define (count-delay/web action)
(let ([new-delay (prompt-read-script "Delay: ")])

(cond [(= 0 new-delay) (action 0)]
[else (action (+ new-delay (count-delay-script)))])))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

Now, look for calls to scripts to move

(define (count-delay/web action)
(let ([new-delay (prompt-read-script "Delay: ")])

(cond [(= 0 new-delay) (action 0)]
[else (action (+ new-delay (count-delay-script)))])))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

Now, look for calls to scripts to move

(define (count-delay/web action)
(let ([new-delay (prompt-read-script "Delay: ")])

(cond [(= 0 new-delay) (action 0)]
[else (action (+ new-delay (count-delay-script)))])))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

The prompt-read-script call happens first, so move it first

(define (count-delay/web action)
(let ([new-delay (prompt-read-script "Delay: ")])

(cond [(= 0 new-delay) (action 0)]
[else (action (+ new-delay (count-delay-script)))])))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

The prompt-read-script call happens first, so move it first

(define (count-delay/web action)
(prompt-read/web "Delay: "

(lambda (box1)
(let ([new-delay box1])

(cond [(= 0 new-delay) (action 0)]
[else (action (+ new-delay (count-delay-script)))])))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

Now move the count-delay-script call (and rename to count-delay/web)

(define (count-delay/web action)
(prompt-read/web "Delay: "

(lambda (box1)
(let ([new-delay box1])

(cond [(= 0 new-delay) (action 0)]
[else (action (+ new-delay (count-delay-script)))])))

Time to Try It! – Exercise 5
(define (count-delay-script)

(let ([new-delay (prompt-read-script "Delay: ")])
(cond [(= 0 new-delay) 0]

[else (+ new-delay (count-delay-script))])))

Now move the count-delay-script call (and rename to count-delay/web)
(define (count-delay/web action)

(prompt-read/web "Delay: "
(lambda (box1)

(let ([new-delay box1])
(cond [(= 0 new-delay) (action 0)]

[else (count-delay/web
(lambda (box2) (action (+ new-delay box2))))])))

Moral: recursive scripts
aren’t harder to convert –

follow same rules

Script Position: Recap

• Now done several examples, including
recursive scripts

• After conversion, all calls to scripts are in
“script position”, so can easily produce
versions that would run on a webserver

• In 2002, student used this to write a web-
based version of Mastermind – used the
conversion to get the looping right.

What Else is Script Position Useful?
Script position also helps program optmization (compilers).

Consider sum (of list of numbers):
(define (sum alon)

(cond [(empty? alon) 0]
[(cons? alon) (+ (first alon) (sum (rest alon)))]))

not in script position

(sum (list 1 3 5 7))
(+ 1 (sum (list 3 5 7)))
(+ 1 (+ 3 (sum (list 5 7))))
(+ 1 (+ 3 (+ 5 (sum (list 7)))))
(+ 1 (+ 3 (+ 5 (+ 7 (sum empty)))))
(+ 1 (+ 3 (+ 5 (+ 7 0))))
(+ 1 (+ 3 (+ 5 7)))
(+ 1 (+ 3 12))
(+ 1 15)
16

Example of run of
sum and main steps in

execution

Notice the shape of
the computation –

grows out then shrinks

What Else is Script Position Useful?
Here’s a version of sum with recursive calls in script position

(define (sum2 alon) (sum-help alon 0))
(define (sum-help alon total)

(cond [(empty? alon) total]
[(cons? alon) (sum-help (rest alon) (+ (first alon) total))]))

Notice the shape of the
computation now – there are no
pending calls, so the expression
at each step has the same size

This version runs in less space
than the original (won’t run out
of room on the stack, whereas

original sum might)

(sum2 (list 1 3 5 7))
(sum-help (list 1 3 5 7) 0)
(sum-help (list 3 5 7) 1)
(sum-help (list 5 7) 4)
(sum-help (list 7) 9)
(sum-help empty 16)
16

Summary

• Script Position (really called “tail position”) is a
useful concept in programming languages

• Many compilers will convert certain calls to tail
position as an optimization (so you can write code
not in script position and still gain benefits of it)

• So why don’t web servers do that? Stay tuned …

For now, you should be able to convert calls to script
position, as we did in these exercises

	CS2135Lectures on Script Position(aka: the “web compiler”)
	Recap: Web (CGI) scripts
	Recap: Web (CGI) scripts
	Why does the difference in structure matter?
	How does our CS training tell us to address this problem?
	Why are We Covering This?
	On to the conversion details …
	Terminology: Script Position
	Terminology: Script Position
	Try it: which calls are in script position?
	Try it: which calls are in script position?
	Try it: which calls are in script position?
	Try it: which calls are in script position?
	What’s Important About Script Position?
	Moving Calls to Script Position
	Moving Calls to Script Position
	Moving Calls to Script Position
	Moving Calls to Script Position
	Moving Calls to Script Position
	Moving Calls to Script Position
	Moving Calls to Script Position
	Moving Calls to Script Position
	Recap: Result of First Example
	One Minor Edit …
	Summary: How to Convert a Function FooScript to FooScript/web
	Summary: How to Move Calls into Script Position
	Time to Try It! – Exercise 1
	Time to Try It! – Exercise 2
	Time to Try It! – Exercise 2
	Time to Try It! – Exercise 2
	Time to Try It! – Exercise 3
	Time to Try It! – Exercise 3
	Time to Try It! – Exercise 4
	Time to Try It! – Exercise 4
	Time to Try It! – Exercise 4
	Time to Try It! – Exercise 4
	Time to Try It! – Exercise 5
	Time to Try It! – Exercise 5
	Time to Try It! – Exercise 5
	Time to Try It! – Exercise 5
	Time to Try It! – Exercise 5
	Time to Try It! – Exercise 5
	Time to Try It! – Exercise 5
	Time to Try It! – Exercise 5
	Time to Try It! – Exercise 5
	Time to Try It! – Exercise 5
	Script Position: Recap
	What Else is Script Position Useful?
	What Else is Script Position Useful?
	Summary

