Name_____________________

CS544

Summer 2003

Final Exam
This exam is closed book – no papers or books allowed. You may print it out. There is no time limit (but let me know how long it took)

You may 1) take this online and email it or 2) Fax it to me at 508-831-5776

If there is any question you don’t understand or you want to say something about, put a note at the end in the Course Assessment section.

Part 1:
Each of these is worth ½ point:

1. The phase of a compiler that changes the intermediate code to be more efficient is

a) Lexical Analysis

b) Syntax Analysis

c) Semantic Analysis

d) Optimization

2. The phase of a compiler that discovers a variable that has not been declared is:

a) Lexical analysis

b) Syntax analysis

c) Semantic analysis

d) Optimization

3 Optimal Code Generation is

a) Tractable

b) Intractable

c) NP-Complete

d) Undecidable

4. A regular expression for strings of letters (l), digits (d) and underscores (_) that begin with a letter and are followed by any number (including none) of letters, digits and underscores is:

a) l (l U d U _)* (l Ud)

b) l (l U d U _l U _d)+

c) l (l U d U _)*

d) None of these
5. The unix tool yacc is:

a) A scanner

b) A scanner generator

c) A Parser

d) A Parser generator

6. The grammar S(Sa |  is

a) Left recursive

b) LL(1)

c) Ambiguous

d) None of these

7. The grammar S(xSy | x | y is

a) Left recursive

b) LL(1)

c) Ambiguous

d) None of these

8. The grammar S((S) |  is

a) Left recursive

b) LL(1)

c) Ambiguous

d) None of these

9. For the grammar S((S) | , the handle of ((S)) is

a) S

b) (S)

c) 
d) ((S))
e) None of these

10. If the items A (a (c and S (c (occur in the same state, there is

a) A shift-reduce conflict

b) A shift-reduce conflict only if c  FOLLOW (A)

c) A shift-reduce conflict only if c  FOLLOW (S)

d) A reduce-reduce error only if c  FOLLOW (A)

11. Inherited attributes are computed by

a) The scanner

b) Ascending the tree

c) Descending the tree

d) None of these

12. Where would the element A(3,2,1) of a 4x4x4 array be stored assuming the first element is A(0,0,0)

a) Base(A) + 37

b) Base(A) + 38

c) Base(A) + 57

d) None of these
13. For the program:

 I = 2

L1: if I > X

 (then) go L2

 Fact = Fact * I

 I = I + 1

 Dumb = 5

 go L1

 L2: Factorial = Fact

 Return

The variables that are live at L1 are:

a) I and Fact

b) Fact and X

c) I and X

d) I, X and Fact

e) I, X, Fact, and Dumb

14. Loops are

a) Cycles

b) Cycles whose tails dominate their heads

c) Cycles whose heads dominate their tails

d) Cycles with more than one entry

15. Dynamic links show

a) Scoping

b) The previous activation record

c) The return point in the code

d) None of these

16. Optimization makes a program “better” where “better” means

a) Faster

b) Smller

c) Uses less power

d) All of these

e) None of these

17. In the following, is A(i) an induction variable
INTEGER A(100)
 DO I = 1,100
 A(I) = 202 – 2 * I

 ENDDO

a) Yes

b) No

18. Why do many compilers only analyze 16 or 32 or 64 data values in data flow analysis?

a) Because bit vectors come in these sizes

b) Because then the bit vector for their values is the word size of the machine
c) Because arithmetic is simpler for powers of 2

d) None of these

19. Very Busy Expressions are computed using

a) Forward Flow Analysis on Some Path

b) Forward Flow Analysis on All Paths

c) Backwards Flow Analysis on Some Path

d) Backwards Flow Analysis on All Paths

e) None of these

20. _____________ Design is very much influenced by a language’s scoping rules

a) Scanner

b) Parser

c) Symbol Table

d) Code Gneration

e) None of these

Name_____________________

Part 2

I have tried to create questions that require minimal typing if you are doing this online.
#1. (2 points) Eliminate the left recursion from the following grammar. Type in the resulting grammar:

A (x | A y

Answer:

3 - 5. Consider the following grammar, G:

S (a S b| b

3. (1 point) What is L(G)?

Answer:
4a) (1 point) Create a top down parsing table. Type or write the entries into the correct place:

Answer:

4b) (1 point) Use your table to parse abb

Answer:
Stack Input Production

5a) (1 point) Create the SLR(1) states (grammar on previous page) Don’t forget to add S’ (S. Create extra states if you need them or omit states you don’t need. Here is a • to use (cut and paste) if you are typing.
State 0 State 1 State 2 State 3 State 4 State 5
5b) (1 point) Create the SLR(1) parse table

Answer:

a) (1 point) Using your table in 5b, parse aab
Answer:
Stack Input Action

#6. Consider the following grammar:

O (D O

O (D

D(0

D(1

D(2

D(3

D(4

D(5

D(6

D(7

a) (1 point) What is L(G)?

Answer:
b) (1 point) Show a parse tree for 56 (It needn’t be beautiful)

Answer:
c) (1 point) Create an attribute called value and add semantic functions to the above grammar which will convert an input string to its binary equivalent. Show its evaluation (try to use a different color if you are typing) on the tree above

Answer (attribute grammar):
#7. (4 Points) A) Create Basic Blocks, a Control Flow Graph and b) perform a data flow analysis (eyeball it – don’t use the algorithms unless you have nothing to do for the next few hours). c) Perform optimizations (if any)

 I = 2

L1: if I > X

 (then) go L2

 Fact = Fact * I

 I = I + 1

 Dumb = 5

 go L1

 L2: Factorial = Fact

 Return
#8. Consider the following recursive code generator algorithm:

Procedure CodeGen (Node)

{

 Case Node Type is:

 1. Expression Operator, Op:

 IF neither child is a leaf THEN /*Result left in Reg */

{ CodeGen(LeftChild)

 Emit “Store Reg, T1 (= GetTemp)”

 CodeGen (RightChild)

 Emit “Store Reg, T2 (= GetTemp)”

 Emit “Load Temp1, Reg

 Emit “Op T2, Reg”

 }

 ELSE IF only one child is a leaf THEN

 {

 CodeGen(Other Child)

 Emit “Op LeafChild, Reg”

 }

 ELSE /* Both children are leaves */

 Emit “Load Left Child, Reg

 Emit “Op Right Child , Reg”

2. “:=”:

 CodeGen (Right Child)

 Emit “Store Reg, @LeftChild”

 3. IF-Else:

a) (1 point) Add code above to generate code for an if-then-else statement

b) (1 point) Create an ast (it needn’t be beautiful) for if (a<b) a = 1 else a = 2 and show the algorithm emitting code for this ast.

Answer:
Using the expression grammar:

E (E + T | T

T (T * F | F

F (int | (E)

where int is a sequence of digits
In the following steps, create an interpreter using lex and yacc which will compute the value of an arithmetic expression. Do not worry about minor syntax errors:

a) (1 point) Lex file

b) (1 point) Yacc file with semantic actions (the $$ stuff) to compute the value of an arithmetic expression

c) (1 point) Show the (unix) steps for creating the interpreter, i.e., the scanner and parser (+ semantics) and the output for the input 2 + 3 * 4

