Name____________________

CS503
Final
#1. Consider the language, L, whose strings consist of an equal number of

0's and 1's (e.g., 100011  L).

a) Using the pumping lemma, show that this language is not regular

If L were regular, then there exists a k such that for any z in L with

|z| > k, z = uvw, |uv| < k, |v| > 0, and uviw is also in L for all i > 0.

Pick z = 0k1k (lots of others to pick). Clearly z is in L and |z| > k.

So z = uvw with uv = 0n (all 0’s), w = 0 k-n 1k.
Since |v| > 0, v = 0m, some m>0.
uv0w = uw should be in L.
But uw = 0 n-m 0 k-n 1k = 0 k-n 1k which cannot be in L.
This is a contradiction, and so L cannot be regular

b) Create a CFG, G, with L = L(G)

S (0 S 1 | 1 S 0 | S S | 

c) Show a parse tree and a leftmost derivation of 100011

[image: image1.png]

S (S S (1 S 0 S (1 0 S (1 0 0 S 1 (1 0 0 0 S 1 1 (1 0 0 0 1 1
#2. The membership question for languages can be expressed: "Given a language, L, and a string w, is w  L"

a) Is the membership question for regular languages decidable? Explain (clearly) why or why not.

It is decidable because regular languages have a dfa that recognize their strings (just feed w into the dfa and see if it is accepted). So clearly there is also a Turing Machine that halts
b) Is the membership question for CFL's decidable. Explain (clearly)

why or why not.
It is decidable because CFL’s have a CFG in Chomsky Normal Form.

The length of a derivation for a string of length n is 2n-1. Since there are finite number of rules, there are a finite number of derivations of length 2n-1. We try them all and see if w is generated. And a Turing Machine can do this.

#3. Let E be the regular expression
 a + aa(a + b)*

Construct a deterministic finite automaton, M, such that M accepts the language denoted by E.
[image: image2.png]

#4. Let R be a regular language and let N be a language which is not regular. Suppose X is a language such that N = R ∩ X. Does it follow that X must be regular? If so, state why. If not, does it follow that X must be non-regular? If so, state why. If neither of these is true name 1) a specific non-regular N and a regular R such that N = R ∩ X with X non-regular and 2) a specific non-regular N and a regular R satisfying N = R ∩ X with X regular.

If X were regular, then, since regular languages are closed under intersection, and since R is regular, it would follow that N = R ∩ X would be regular. But it is given that R is not regular. Therefore X must be non-regular.
#5. Create an nfa to accept the language of “{integers} U {identifiers}” where identifiers begin with a letter and are followed by 0 or more letters or digits. Use “L” for letter and “D” for digit.

[image: image3.png]

#6. Convert the following to a minimal dfa using a) the subset

construction and b) Partitioning. Show both steps clearly.

[image: image4.png]N



{1} {1} {1,2}

{1,2} {1,3} {1,2,3}

{1,3} {1,4} {1,2,4}

{1,2,3} {1,3,4} {1,2,3,4}

{1,4} {1,4} {1,2,4}

{1,2,4} {1,3,4} {1,2,3.4}

{1,3,4} {1,4} {1,2,4}

{1,2,3,4} {1,3,4} {1,23,4}

Minimizing:

{1} {1} {1,2}

{1,2} {1,3} {1,2,3}

{1,3} {1,4} {1,2,4}

{1,2,3} {1,3,4} {1,2,3,4}

{1,4} {1,4} {1,2,4}

{1,2,4} {1,3,4} {1,2,3.4}

{1,3,4} {1,4} {1,2,4}

{1,2,3,4} {1,3,4} {1,2,3,4}

Continuing

{1} {1} {1,2}

{1,2} {1,3} {1,2,3}

{1,3} {1,4} {1,2,4}

{1,2,3} {1,3,4} {1,2,3,4}

{1,4} {1,4} {1,2,4}

{1,2,4} {1,3,4} {1,2,3.4}

{1,3,4} {1,4} {1,2,4}

{1,2,3,4} {1,3,4} {1,2,3,4}

Continuing

{1} {1} {1,2}

{1,2} {1,3} {1,2,3}

{1,3} {1,4} {1,2,4}

{1,2,3} {1,3,4} {1,2,3,4}

{1,4} {1,4} {1,2,4}

{1,2,4} {1,3,4} {1,2,3.4}

{1,3,4} {1,4} {1,2,4}

{1,2,3,4} {1,3,4} {1,2,3,4}

#7. Given the following dfa, compute the regular expression it accepts by eliminating state 2.
[image: image5.png]

13 {123} = 13 {1,3} + 13 {1,3} (22 {1,3})*23{1,3}
where 13 {123} = the strings that takes you from state 1 to 3 using states 1,2,3 (others similar)

 =  + 0*1 (00*1)*1(0+1)*

L(m) = 0*1 (00*1)*1(0+1)*
Other ways to do this.
#8. Write regular expressions for the set of strings over {0,1}* with

a) at least 2 consecutive 1’s

(0 + 1)* 1 1 (0 + 1)*

b) at most 2 consecutive 1’s

(0 + 10)* (+ 1 + 11) 0 + 01)*
c) no consecutive 1’s

0*(10 +0)* (+ 1)
#9. Convert the following grammar to Chomsky Normal Form. Show each step clearly.

S (A B C

A (a A | 
B (b B | 
C (c C | 
Remove :

S (A B C | A B | B C | A C | A | B | C | e

A (a A | a

B (b B | b

C (c C | c

Remove unit productions:

S (A B C | A B | B C | A C | aA | a| b B | b |

 c C | c | 
A (a A | a

B (b B | b

C (c C | c

Chomsky Normal Form:

S (A T1 | A B | B C | A C | T2 A | a | T3 B| b |

 T4 C| c | 

A (T2 A

B (T3 B

C (T4 C

T1 (B C

T2 (a

T3 (b

T4 (c

#10. True or False:

a) Given G: S (0S | 1 S | , L(G) = 0*1* True False
b) ( + )* = ( * )* * True False

c) a b b matches b* + (a + b)* b True False

d) If L is regular, then * - L is regular True False

e) Regular languages are a proper subset

 of the context-free languages True False
#11. Label each concentric ring with one of the following languages:

a) context-free b) non recursively-enumerable c) recursive

d) recursively enumerable e) regular. The concentric rings are intended to show the subset property.
[image: image6.png]content free

o"1"2

#12. Show a specific language in each concentric ring that is not in the next inner-most ring. (If you need to describe one in words, do so below). You need not prove your answers.
Consider Turing Machines that accept languages over alphabet {a}
M1, M2, M3, M4,

Define L = {ai | ai  L(Mi}

#13. Explain briefly and clearly the difference between Intractable, NP and NP-Complete problems
Intractable problems can be proved to be solvable in at best exponential time

NP problems can be solved in Polynomial time on an non-deterministic Turing Machine (and not necessarily in Polynomial time on a deterministic TM)

NP-Complete problems are 1) in NP and 2) NP-Hard: every problem in NP is reducible in Polynomial time to the problem.
#14. Complete each sentence with the smallest one of the answers:

· regular

· context-free

· Recursive

· Recursively enumerable

· none of the above

Justify your answers
(a) If A is regular and B is regular, then A c (B is: : ____Regular___________

Proof
Regular languages are closed under complement so A c is regular Regular
languages are closed under union so A c (B is regular
(b) If A is context-free and B is regular, then A c (B is: Recursive
Proof
CFL’s are not closed under complement, but CFL’s are a subset of recursive which are closed under complement. so A c is recursive Regular
languages are a subset of recursive and recursive are closed under union so A c (B is recursive.
(c) If A is regular and B is context-free, then A c (B is____context-free____

Proof
Regular languages are closed under complement so A c is regular and hence context-free Context-free languages are closed under union so A c (B is context-free.
(d) If A is recursive and B is recursive, then A c (B is: _______________

____Recursive______

Proof
Recursive languages are closed under complement and union.
(e) If A is recursive and B is Recursively enumerable, then A c (B is: _______

Proof
Recursive languages are closed under complement so A c is recursive and hence r.e.

R.e. languages are closed under union so A c (B is r.e.
(f) If A is recursively enumerable and B is recursive then A c (B is_None of

 these__

Proof
R.e. languages are not close under complement.
#15. Circle the correct response and prove your answer: The recursively enumerable languages are/are not closed under complement.

If they were, then all r.e. languages would be recursive since if a language and its complement are r.e., the language is recursive.
#16. Describe in general terms (i.e., pseudo-code) a Turing machine which makes a copy of its input. Let  = {a,b}.
Lots of other ways to do this:
Repeat until all X and Y’s converted back to a’s and b’s

 Move to leftmost a or b.

 If symbol is a, convert to X and move past B and add a to string being created

If symbol is b, convert to Y and move past B and add b to string being created

#17. Create the transitions for #6. Show a computation for the string a b
#18. Show by reduction that there is no algorithm that determines whether an arbitrary Turing Machine prints the symbol “1” on its final transition.

Suppose such a TM exists:

[image: image7.png][W prints a 1 on s final transition

rRM)w —3 P

[~ M doesn't print a 1 on its final transi

Create a TM N which outputs an encoding of M’: M’ has all of M’s transitions except that any existing transitions involving tape symbol of “1” are changed to use some other symbol. For any configuration which does not have a transition (so M halts), add a transition that prints a “1”. Then M’ prints a 1 exactly when M halts on w:

[image: image8.png]=M halts on W-

[W prints a 1 on its final tr

RMW-| | N RMWYW P

[——> W doesn't print a 1 on its final transitior

[M doesn't halt on W-

But this solves the Halting Problem. Therefore P does not exist.
#19. Name 2 decidable questions about Context-free languages/grammars and justify your answer.

Membership Problem. Can we find an algorithm that takes as input any grammar G and any string w and decides whether w can be generated by G? (This is what compilers do!)

Is L(G) empty? Decidable because we have an algorithm to tell us if symbols are useless (derive anything). We just have to check to see if S is useful or not.

Lots more…

#20. Name 2 undecidable questions about context-free languages/grammars.

You need not justify your answers.
Is a context-free grammar ambiguous?

Does L(G) = *?

