Homework #7

#1. (10 Points) Use the pumping lemma for CFL's to show $L = \{a^i b^j a^i b^j | i, j \ge 0\}$ is not a CFL.

#2. (10 Points) Consider the following 2 languages:

 $\begin{array}{l} L_1 = \{a^n b^{2n} c^m \mid n, \, m \geq 0 \} \\ L_2 = \{a^n b^m c^{2m} \mid n, \, m \geq \underline{0} \} \end{array}$

- a) Show that each of these languages is context-free.
- b) Is $L_1 \cap L_2$ context-free? Justify your answer.

#3. (20 Points) Convert the following grammar to Chomsky Normal Form

 $S \rightarrow A | A B a | A b A$ $A \rightarrow A a | \varepsilon$ $B \rightarrow B b | BC$ $C \rightarrow C B | C A | b B$

#4. (10 Points) Let G be a grammar in Chomsky Normal Form. Fill in the following table.

W	$ \mathbf{w} $	length(derivation)	max	min
			depth(tree)	depth(tree)
3	0	1	1	1
A ₁	1	1	1	1
$a_1 a_2$	2	3	2	2
$a_1 a_2 a_3$	3	5	3	3
$a_1 a_2 a_3 a_4$				
$a_1 a_2 a_3 a_4 a_5$				
$a_1 a_2 a_3 a_n$	n			

#5. Post to the Module 7 Topics, applications of

- a) Chomsky Normal Form
- b) Greibach Normal Form