#1. Consider the following NFA that will recognize both the keyword “if” and identifiers that consist of at least 1 letter:

Use the subset construction to convert this NFA to a DFA:

Solution

The problem here is that both f and i are in a-z so you need separate entries for f, i, and {a-z} – {f,i} to get a deterministic machine.

#2. Create the regular expression for the following by eliminating states. Please eliminate r first, then s, then q:
Solution

Eliminating r:

Eliminating s:

Eliminating q:

So \(L(M) = ((1 + 0(0 + 10^*1)(1(0 + 10^*1))^* 0)^* \)

#3. Consider the following operation -3 on regular languages L:

\(L^{-3} = \{ w \mid y \in L \text{ and } |y| = 3 \} \)

Show regular languages are closed under the -3 operation.
Solution

A regular language \(L \) has a \(\text{fa}, M \), such that \(L = \ell(M) \).

Add a new start state and \(\lambda \)-transitions to all states that are reachable by a path of length 3 from the original start state of \(M \). This new \(\text{nfa} \) accepts \(L^3 \).

#4. Show that it is decidable whether a regular language, \(L \), contains 1000 strings or more.

If the \(\text{dfa} \) for \(L \) contains a cycle on a path from the initial to final state, then it accepts an infinite number of strings, so certainly accepts 1000 or more.

If there is no cycle from the initial to a final state, just count the number of paths from the initial to the various final states. If there are 1000 or more such paths, \(L \) contains 1000 strings or more. If there are fewer, then \(L \) does not accept 1000 strings or more.

#5 Use the pumping lemma to show

a) \(L = \{ w \mid w \text{ contains twice as many } a \text{'s as } b \text{'s} \} \) is not regular

Proof

Note that \(L \neq \{ a^{2n}b^n \mid n \geq 0 \} \) !!!

If \(L \) were regular, then there is a \(\text{dfa} \), \(M \), with \(k \) states accepting \(L \).

Pick \(z = a^{2k}b^k \)

Then, since \(z \in L \) and \(|z| \geq k \), by the pumping lemma:

\(z = uvw \) with \(|uv| \leq k \), length(\(v \)) > 0 and \(uv^iw \) is also in \(L \) for all \(i \geq 0 \).

Because \(|uv| \leq k \), \(uv \) is all \(a \)'s and since length(\(v \)) > 0, \(v = a^j \), some \(j \).

When \(i = 2 \), we have the string: \(uvvvw = a^{2k+j}b^k \)

which has more than twice as many \(a \)'s as \(b \)'s. Thus \(uvvvw \) is not in \(L \) which is a contradiction.

Therefore the language is not regular.

b) \(L = \{ 0^n \mid n \text{ is a power of } 2 \} \)
Proof

If \(L \) were regular, then there is a dfa, \(M \), with \(k \) states accepting \(L \).

Pick \(z = 0^m \) where \(m = 2^k \)

Then, since \(|z| = 2^k \geq k \), by the pumping lemma:

\(z = uvw \) with \(|uv| \leq k \), length(v) >0 and \(uv^iw \) is also in \(L \) for all \(i \geq 0 \).

Since \(|uv| \leq k \) and length(v) >0, there are between 1 and \(k \) 0’s in v.

\[1 \leq |v| \leq k \]

So \(2^k + 1 \leq |uvw| \leq 2^k + k < 2^k + 2^k = 2^{k+1} \)

So \(uvvw \) has length between \(2^k + 1 \) and \(2^k + k \).

So \(|uvvw| \) cannot be a power of 2 and thus uvvw is not in the language.
Therefore \(L \) is not regular.