Name_______________________

Homework #2
People I worked with and URL’s of sites I visited:

#1. Convert to Chomsky Normal Form. Please follow the steps even if you can “see” the answer:

a) the expression grammar, G:

E (E + T | T

T (T * F |F

F ((E) |a

Recursive Start
E’ (E

E (E + T | T

T (T * F |F

F ((E) |a

No  productions
Chain Rules
F ((E) | a ok

Change T (T * F |F to T (T * F | (E) | a

Change E (E + T | T to E (E + T | T * F | (E) | a

Change E’ (E to E’ (E + T | T * F | (E) | a

So have:

E’ (E + T | T * F | (E) | a

E (E + T | T * F | (E) | a

T (T * F | (E) | a

F ((E) | a

Useless
1. All productions produce terminal strings

2. All symbols reachable from S

Chomsky Normal Form
Introduce Ta, T(, T), T+, T*:

E’ (E T+ T

E’ (T T* F

E’ (T(E T)

E’ (a

E (E T+ T

E (T T* F

E (T(E T)
E (a

T (T T* F

T (T(E T)
T (a

F (T(E T)
F (a
Ta (a
T(((
T)()
T+ (+
T*(*
Introduce Intermediate variables: V1 ,V2 ,V3 ,V4 ,V5:
E’ (T V1
V1 (E T)
E’ (a

E (E V2
V2(T+ T

E (T V3
V3 (T* F

T (T(V4

E (a
V4 (E T)

T (a

F (T(V5
V5 (E T)
F (a
Ta (a
T(((
T)()
T+ (+
T*(*
b) S (A | A B a | A b A
 A (A a | 
 B (B b | B C

 C (C B | C A | b B

Recursive Start

none

Remove  Productions

Null = {A, S}

C (C B | C A | b B

B (B b | B C

A (A a | a

S (A | A B a | A b A | B a | b A | A b | b | 
or

S (A | A B a | A b A | B a | b A | A b | b | 
A (A a | a

B (B b | B C

C (C B | C A | b B

Remove chain rules
S (A a | a | A B a | A b A | B a | b A | A b | b | 
A (A a | a

B (B b | B C

C (C B | C A | b B

Remove useless
Term = {A, S}

so have:

S (A a | a | A b A | b A | A b | b | 
A (A a | a

Reach = {S, A}

so above grammar is ok.

Chomsky Normal Form
Introduce new variables: Ta, Tb

S (A Ta | a | A Tb A | Tb A | A Tb | b | 
A (A Ta | a
Ta (a
Tb (b

Introduce new variables: V1

S (A Ta | a | A V1 | Tb A | A Tb | b | 
V1 (Tb A
A (A Ta | a
Ta (a
Tb (b
#2. Show the following languages are regular by creating finite automata with L = L(M)

a) Strings over {a,b} that contain 2 consecutive a’s

[image: image1.png]

	
	a
	b

	>q0
	q1
	q0

	q1
	q2
	q0

	*q2
	q2
	q2

b) Strings over {a,b} that do not contain 2 consecutive a’s

[image: image2.png]

	
	a
	b

	>*q0
	q1
	q0

	*q1
	q2
	q0

	q2
	q2
	q2

c) The set of strings over {0,1} which contain the substring 00 and the substring 11
Problem doesn’t say whether this must be a dfa and this is easier with an nfa:

[image: image3.png]

	
	
	0
	1

	>q0
	q1 , q 5
	
	

	q1
	
	q2
	

	q2
	
	q3
	q1

	q3
	
	q3
	q4

	q4
	
	q3
	q9

	q 5
	
	q 5
	q6

	q6
	
	q 5
	q7

	q7
	
	q8
	q7

	q8
	
	q10
	q7

	*q9
	
	q9
	q9

	*q10
	
	q10
	q10

d) The set of strings over {a,b} which do not contain the substring ab.
Similar to parts a and b, I will first create a fa that does accept a b and then I will reverse the final and the nonfinal states:

[image: image4.png]o
©

	
	a
	b

	q0
	q1
	q0

	q1
	q1
	q2

	q2
	q2
	q2

#3. Describe L(M) for the following nfa’s: a) in words and b) as a regular expression

a)

[image: image5.png]

L(M) = Alternating 0’s and 1’s (including none) that begin with a 0

(01)* (01 U 0)

b)
[image: image6.png]

0 or more ab’s followed optionally by 0 or more aab’s
(ab)* (aab)*
#4. a) Create an NFA (with transitions) for all strings over {0, 1, 2} that are missing at least one symbol. For example, 00010, 1221,and 222 are all in L while 221012 is not in L.
[image: image7.png]

b) Given an NFA with several final states, show how to convert it into one with exactly one start state and exactly one final state.

Create a new initial state and a-transition from it to all the original start states

Create a new final state and a -transition from all the original final states (which mark to no longer be final) to this new final state

c) Suppose an NFA with k states accepts at least one string. Show that it accepts a string of length k-1 or less.

Look at a fa with 3 states:

[image: image8.png]

No matter how you draw the transitions or which states are final states, to process a string of length k means you visited a state twice. For example:

[image: image9.png]

accepts the string of length 3: aba

But just by not visiting the revisited state (q1), this will accept a a (of length 2)

In general, if a string of length k is accepted by a fa with k states, it visits (at least) 1 state twice. By not visiting this state the 2nd time (e.g., don’t take the loop), we can accept a string with 1 fewer symbol, i.e, of length k – 1.

d) Let L be a regular language. Show that the language consisting of all strings not in L is also regular.
If L is regular, there is a dfa, M, such that L = L(M), that is, M accepts L. If we create a new finite automaton, M’, by reversing final and non-final states, we will accept what M didn’t and reject what M accepted; that is, C(L) = L(M’)
#5. a) Consider the extended transition function, *, defined by:
 *(q,) = q

 * (q,wa) =  ( *(q,w),a)

a) Show that *(q,a) = (q,a) (follows from the definition)

 * (q,a) =  ( *(q,),a) =  (q,a)

b) Show that *(q, uv) = * (*(q,u),v) (use induction)

Proof by induction on |v|

Basis When |v| = 0, v = , and

left-hand-side: *(q, u) = *(q, u) (Property of 
right-hand-side: * (*(q,u),) = *(q, u) (Definition of *)
Induction Hypothesis
*(q, uv) = * (*(q,u),v) for 0 < |v| < n
Induction Step: To show *(q, uv) = * (*(q,u),v) for |v| = n + 1:

Since |v|= n + 1, and n > 0, v an be written wa where |w|= n and a  *

left-hand-side: *(q, uv) = *(q, u (wa)) substituting wa for v

 = *(q, (uw) a) associativity of concatenation
 =  (*(q, uw), a) definition of *
 =  (*(*(q,u),w),a) IH
 = *(*(q,u),wa) definition of *

 = *(*(q,u) v) v = wa
 = right-hand-side
c) Show that *(q,aw) = *((q,a),w) (follows from above)

Considering symbol “a” as a string:

*(q, aw) = * (*(q,a),w) by part b
 = * ((q,a),w) by part a
