Name_______________________

Homework #2
People I worked with and URL’s of sites I visited:

#1. Convert to Chomsky Normal Form. Please follow the steps even if you can “see” the answer:

a) the expression grammar, G: 

E ( E + T | T

T ( T * F |F

F ( (E) |a

Recursive Start
E’ ( E

E ( E + T | T

T ( T * F |F

F ( (E) |a

No  productions
Chain Rules
F ( (E) | a    ok

Change T ( T * F |F    to  T ( T * F | (E) | a

Change E ( E + T | T  to  E ( E + T  | T * F | (E) | a

Change E’ ( E to E’ ( E + T  | T * F | (E) | a

So have:

E’ ( E + T  | T * F | (E) | a

E ( E + T  | T * F | (E) | a

T ( T * F | (E) | a

F ( (E) | a    

Useless
1. All productions produce terminal strings

2. All symbols reachable from S

Chomsky Normal Form
Introduce Ta, T(, T), T+, T*:

E’ ( E T+ T   

E’ ( T T* F  

E’ ( T(E T) 

E’ ( a

E ( E T+ T  

E ( T T* F 

E ( T(E T)
E ( a

T ( T T* F 

T ( T(E T)
T (  a

F ( T(E T)
F (  a
Ta ( a
T( ( (
T)( )
T+ ( +
T*( *
Introduce Intermediate variables: V1 ,V2 ,V3 ,V4 ,V5:
E’ ( T V1 
V1 ( E T)
E’ ( a

E ( E V2
V2( T+ T  

E ( T V3
V3 ( T* F 

T ( T(V4

E ( a
V4 ( E T)

T (  a

F ( T(V5
V5 ( E T)
F (  a
Ta ( a
T( ( (
T)( )
T+ ( +
T*( *
b) S (  A | A B a | A b A
    A ( A a | 
    B ( B b | B C

    C ( C B | C A | b B

Recursive Start

none

Remove    Productions

Null = {A, S}

C ( C B | C A | b B 

B ( B b | B C

A ( A a | a

S ( A | A B a | A b A | B a | b A | A b | b | 
or

S ( A | A B a | A b A | B a | b A | A b | b | 
A ( A a | a

B ( B b | B C

C ( C B | C A | b B 

Remove chain rules
S ( A a | a | A B a | A b A | B a | b A | A b | b | 
A ( A a | a

B ( B b | B C

C ( C B | C A | b B 

Remove useless
Term = {A, S}

so have:

S ( A a | a | A b A | b A | A b | b | 
A ( A a | a

Reach = {S, A}

so above grammar is ok.

Chomsky Normal Form
Introduce new variables: Ta, Tb

S ( A Ta | a | A Tb A | Tb A | A Tb | b | 
A ( A Ta | a
Ta ( a
Tb ( b

Introduce new variables: V1

S ( A Ta | a | A V1 | Tb A | A Tb | b | 
V1 ( Tb A
A ( A Ta | a
Ta ( a
Tb ( b
#2. Show the following languages are regular by creating finite automata with L = L(M)

a) Strings over {a,b} that contain 2 consecutive a’s

[image: image1.png]



	
	a
	b

	>q0
	q1
	q0

	q1
	q2
	q0

	*q2
	q2
	q2


b) Strings over {a,b} that do not contain 2 consecutive a’s

[image: image2.png]



	
	a
	b

	>*q0
	q1
	q0

	*q1
	q2
	q0

	q2
	q2
	q2


c) The set of strings over {0,1} which contain the substring 00 and the substring 11
Problem doesn’t say whether this must be a dfa and this is easier with an nfa:

[image: image3.png]



	
	
	0
	1

	>q0
	q1 , q 5
	
	

	q1
	
	q2
	

	q2
	
	q3
	q1

	q3
	
	q3
	q4

	q4
	
	q3
	q9

	q 5
	
	q 5
	q6

	q6
	
	q 5
	q7

	q7
	
	q8
	q7

	q8
	
	q10
	q7

	*q9
	
	q9
	q9

	*q10
	
	q10
	q10


d) The set of strings over {a,b} which do not  contain the substring ab.
Similar to parts a and b, I will first create a fa that does accept a b and then I will reverse the final and the nonfinal states:

[image: image4.png]o
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	a
	b

	q0
	q1
	q0

	q1
	q1
	q2

	q2
	q2
	q2


#3. Describe L(M) for the following nfa’s: a) in words and b) as a regular expression

a)

[image: image5.png]



L(M) = Alternating 0’s and 1’s (including none) that begin with a 0

(01)* (01 U 0)

b) 
[image: image6.png]



0 or more ab’s followed optionally by 0 or more aab’s
(ab)* (aab)*
#4. a) Create an NFA (with transitions) for all strings over {0, 1, 2} that are missing at least one symbol. For example, 00010, 1221,and 222 are all in L while 221012  is not in L.
[image: image7.png]



b) Given an NFA with several final states, show how to convert it into one with exactly one start state and exactly one final state.

Create a new initial state and a-transition from it to all the original start states 

Create a new final state and a -transition from all the original final states (which mark to no longer be final) to this new final state

c) Suppose an NFA with k states accepts at least one string. Show that it accepts a string of length k-1 or less. 

Look at a fa with 3 states:

[image: image8.png]



No matter how you draw the transitions or which states are final states, to process a string of length k means you visited a state twice. For example:

[image: image9.png]



accepts the string of length 3: aba

But just by not visiting the revisited state (q1), this will accept a a (of length 2)

In general, if a string of length k is accepted by a fa with k states, it visits (at least) 1 state twice. By not visiting this state the 2nd time (e.g., don’t take the loop), we can accept a string with 1 fewer symbol, i.e, of length k – 1.

d) Let L be a regular language. Show that the language consisting of all strings not in L is also regular.
If L is regular, there is a dfa, M, such that L = L(M), that is, M accepts L. If we create a new finite automaton, M’, by reversing final and non-final states, we will accept what M didn’t and reject what M accepted; that is, C(L) = L(M’)
#5. a) Consider the extended transition function, *, defined by:
 *(q,) = q

 * (q,wa) =  ( *(q,w),a)

a) Show that *(q,a) = (q,a) (follows from the definition)

 * (q,a) =  ( *(q,),a) =  (q,a)

b) Show that *(q, uv) = * (*(q,u),v) (use induction)

Proof  by induction on |v| 

Basis When |v| = 0, v = , and 

left-hand-side: *(q, u) = *(q, u)   (Property of 
right-hand-side: * (*(q,u),) = *(q, u)  (Definition of *)
Induction Hypothesis
*(q, uv) = * (*(q,u),v)     for 0 < |v| < n
Induction Step:  To show *(q, uv) = * (*(q,u),v) for |v| = n + 1:

Since |v|= n + 1, and n > 0, v an be written wa where |w|= n and a  *

left-hand-side: *(q, uv)   = *(q, u (wa))         substituting wa for v

                                                       =  *(q, (uw) a )        associativity of concatenation
                                                         =  (*(q, uw), a)   definition of *
                                                   =  (*(*(q,u),w),a)   IH
                                                   = *(*(q,u),wa)     definition of *

                                                   = *(*(q,u) v)          v = wa
                                                           = right-hand-side
c) Show that *(q,aw) = *((q,a),w) (follows from above)

Considering symbol “a” as a string:

*(q, aw) = * (*(q,a),w)     by part b
                                            = * ((q,a),w)        by part a
