
Context-Free Grammars
Lecture 7

http://webwitch.dreamhost.com/grammar.girl/

CS 536 Fall 2000 2

Outline

• Scanner vs. parser
– Why regular expressions are not enough

• Grammars (context-free grammars)
– grammar rules
– derivations
– parse trees
– ambiguous grammars
– useful examples

• Reading:
– Sections 4.1 and 4.2

CS 536 Fall 2000 3

The Functionality of the Parser

• Input: sequence of tokens from lexer

• Output: parse tree of the program
– parse tree is generated if the input is a legal program
– if input is an illegal program, syntax errors are issued

• Note:
– Instead of parse tree, some parsers produce directly:

• abstract syntax tree (AST) + symbol table (as in P3), or
• intermediate code, or
• object code

– In the following lectures, we’ll assume that parse tree is
generated.

CS 536 Fall 2000 4

Comparison with Lexical Analysis

Parse treeString of
tokens

Parser

String of
tokens

String of
characters

Lexer

OutputInputPhase

CS 536 Fall 2000 5

Example

E

E

E E

E+

id*

idid

• The program:
x * y + z

• Input to parser:
ID TIMES ID PLUS ID
we’ll write tokens as follows:
id * id + id

• Output of parser:
the parse tree à

CS 536 Fall 2000 6

Why are regular expressions not enough?

TEST YOURSELF #1
• Write an automaton that accepts strings

– “a”, “(a)”, “((a))”, and “(((a)))”

– “a”, “(a)”, “((a))”, “(((a)))”, … “(ka)k”

CS 536 Fall 2000 7

Why are regular expressions not enough?

TEST YOURSELF #2
• What programs are generated by?

digit+ ((“+” | “-” | “*” | “/”) digit+)*

• What important properties this regular
expression fails to express?

CS 536 Fall 2000 8

What must parser do?

1. Recognizer: not all strings of tokens are programs
– must distinguish between valid and invalid strings of tokens

2. Translator: must expose program structure
• e.g., associativity and precedence
• hence must return the parse tree

We need:
– A language for describing valid strings of tokens

• context-free grammars
• (analogous to regular expressions in the scanner)

– A method for distinguishing valid from invalid strings of
tokens (and for building the parse tree)
• the parser
• (analogous to the state machine in the scanner)

CS 536 Fall 2000 9

We need context-free grammars (CFGs)

• Example: Simple Arithmetic Expressions
– In English:

• An integer is an arithmetic expression.
• If exp1 and exp2 are arithmetic expressions,

then so are the following:
exp1 - exp2
exp1 / exp2
(exp1)

• the corresponding CFG: we’ll write tokens as follows:
exp à INTLITERAL E à intlit
exp à exp MINUS exp E à E - E
exp à exp DIVIDE exp E à E / E
exp à LPAREN exp RPAREN E à (E)

CS 536 Fall 2000 10

Reading the CFG

• The grammar has five terminal symbols:
– intlit, -, /, (,)
– terminals of a grammar = tokens returned by the scanner.

• The grammar has one non-terminal symbol:
– E
– non-terminals describe valid sequences of tokens

• The grammar has four productions or rules,
– each of the form: E à α

• left-hand side = a single non-terminal.
• right-hand side = either

– a sequence of one or more terminals and/or non-terminals, or
– ε (an empty production); again, the book uses symbol λ

CS 536 Fall 2000 11

Example, revisited

• Note:
– a more compact way to write previous grammar:

E à intlit | E - E | E / E | (E)

or

E à intlit
| E - E
| E / E
| (E)

CS 536 Fall 2000 12

A formal definition of CFGs

• A CFG consists of
– A set of terminals T
– A set of non-terminals N
– A start symbol S (a non-terminal)
– A set of productions:

{ }
1 2

where and
n

i

X YY Y

X N Y T N ε

→

∈ ∈ ∪ ∪

L

CS 536 Fall 2000 13

Notational Conventions

• In these lecture notes
– Non-terminals are written upper-case
– Terminals are written lower-case
– The start symbol is the left-hand side of the first

production

CS 536 Fall 2000 14

The Language of a CFG

The language defined by a CFG is the set of
strings that can be derived from the start
symbol of the grammar.

Derivation: Read productions as rules:

Means can be replaced by

1 nX Y Y→ L

 X 1 nY YL

CS 536 Fall 2000 15

Derivation: key idea

1. Begin with a string consisting of the start
symbol “S”

2. Replace any non-terminal X in the string by a
the right-hand side of some production

3. Repeat (2) until there are no non-terminals in
the string

1 nX Y Y→ L

CS 536 Fall 2000 16

Derivation: an example

CFG:
E à id
E à E + E
E à E * E
E à (E)

Is string id * id + id in the
language defined by the grammar?

E

E+E

E E+E

id E + E

id id + E

id id + id

→

→ ∗

→ ∗

→ ∗

→ ∗

derivation:

CS 536 Fall 2000 17

Terminals

• Terminals are called because there are no
rules for replacing them

• Once generated, terminals are permanent

• Therefore,
terminals are the tokens of the language

CS 536 Fall 2000 18

The Language of a CFG (Cont.)

More formally, write

if there is a production

1 1 1 1 1i n i m i nX X X X X Y Y X X− +→L L L L L

1 i mX Y Y→ L

CS 536 Fall 2000 19

The Language of a CFG (Cont.)

Write

if

in 0 or more steps

1 1n mX X Y Y∗
→L L

1 1n mX X Y Y→ → →L L L L

CS 536 Fall 2000 20

The Language of a CFG

Let G be a context-free grammar with start
symbol S. Then the language of G is:

{ }1 1| and every is a terminaln n ia a S a a a∗→K K

CS 536 Fall 2000 21

Examples

Strings of balanced parentheses

The grammar:

()S S

S ε

→

→

()

|

S S

ε

→

{ }() | 0i i i ≥

same
as

CS 536 Fall 2000 22

Arithmetic Example

Simple arithmetic expressions:

Some elements of the language:

E E+E | E E | (E) | id→ ∗

id id + id

(id) id id

(id) id id (id)

∗

∗ ∗

CS 536 Fall 2000 23

Notes

The idea of a CFG is a big step. But:

• Membership in a language is “yes” or “no”
– we also need parse tree of the input!
– furthermore, we must handle errors gracefully

• Need an “implementation” of CFG’s,
– i.e. the parser
– we’ll create the parser using a parser generator

• available generators: CUP, bison, yacc

CS 536 Fall 2000 24

More Notes

• Form of the grammar is important
– Many grammars generate the same language
– Parsers are sensitive to the form of the grammar

• Example:
E à E + E

| E – E
| intlit

is not suitable for an LL(1) parser (a common kind of parser).
Stay tuned, you will soon understand why.

CS 536 Fall 2000 25

Derivations and Parse Trees

A derivation is a sequence of productions

A derivation can be drawn as a tree
– Start symbol is the tree’s root
– For a production add children

to node

S → → →L L L

1 nX Y Y→ L
 X

1 nY YL

CS 536 Fall 2000 26

Derivation Example

• Grammar

• String

E E+E | E E | (E) | id→ ∗

id id + id∗

CS 536 Fall 2000 27

Derivation Example (Cont.)

E

E+E

E E+E

id E + E

id id + E

id id + id

→

→ ∗

→ ∗

→ ∗

→ ∗

E

E

E E

E+

id*

idid

CS 536 Fall 2000 28

Derivation in Detail (1)

E

E

id * id + id

CS 536 Fall 2000 29

Notes on Derivations

• A parse tree has
– Terminals at the leaves
– Non-terminals at the interior nodes

• An in-order traversal of the leaves is the
original input

• The parse tree shows the association of
operations, the input string does not

CS 536 Fall 2000 30

Left-most and Right-most Derivations

• The example is a left-
most derivation
– At each step, replace the

left-most non-terminal

• There is an equivalent
notion of a right-most
derivation

E

E+E

E+id

E E + id

E id + id

id id + id

→

→

→ ∗

→ ∗

→ ∗

CS 536 Fall 2000 31

Right-most Derivation in Detail (1)

E

E

id * id + id

CS 536 Fall 2000 32

Derivations and Parse Trees

• Note that right-most and left-most
derivations have the same parse tree

• The difference is the order in which branches
are added

CS 536 Fall 2000 33

Summary of Derivations

• We are not just interested in whether
s ε L(G)
– We need a parse tree for s,

(because we need to build the AST)

• A derivation defines a parse tree
– But one parse tree may have many derivations

• Left-most and right-most derivations are
important in parser implementation

CS 536 Fall 2000 34

Ambiguity

• Grammar

• String

E E+E | E E | (E) | id→ ∗

id id + id∗

CS 536 Fall 2000 35

Ambiguity (Cont.)

This string has two parse trees

E

E

E E

E*

id +

idid

E

E

E E

E+

id*

idid

CS 536 Fall 2000 36

TEST YOURSELF #3

Question 1:
– for each of the two parse trees, find the

corresponding left-most derivation

Question 2:
– for each of the two parse trees, find the

corresponding right-most derivation

CS 536 Fall 2000 37

Ambiguity (Cont.)

• A grammar is ambiguous if for some string
(the following three conditions are equivalent)
– it has more than one parse tree
– if there is more than one right-most derivation
– if there is more than one left-most derivation

• Ambiguity is BAD
– Leaves meaning of some programs ill-defined

CS 536 Fall 2000 38

Dealing with Ambiguity

• There are several ways to handle ambiguity

• Most direct method is to rewrite grammar
unambiguously

• Enforces precedence of * over +

' '

'

E E E | E

E id E' | id | (E)

→ +

→ ∗

