Project Part 3

Abstract Syntax Trees

10 Points

[image: image1.jpg]BNF + Actions

Parser
Generator

Tokens —j Parser [—> AST

Note: Students have told me in the past that this assignment takes in excess of 30 hours, so start now!

An Abstract Syntax Tree is a "pared down" parse tree. Each node is an element of the language. The non-leaf nodes represent operators while the leaf nodes represent operands.

Example 1 Abstract Syntax Tree for a + b where a is opnd1 and b is opnd2.

[image: image2.png]PLUS

opnd1 opnaz

In parenthesized form, this might be written:

(plus ("a" "b"))

or

(+ (a b))

or perhaps

(plus

 ("a" "b")

)

The production that relates to such a node is

addop_expression --> mulop_expression { addop mulop_expression }

If we create a data structure for the nodes of the abstract syntax tree:

[image: image3.png]

then we can add attributes and functions such as:

addop_expression --> mulop_expression { addop mulop_expression }

addop_expression.NodePtr = MakeNode
addop_expression.Info = "+"

addop_expression.Left = mulop_expression1.NodePtr
addop_expression.Right = mulop_expression2.NodePtr

These statements might create an ast node (pointed to by NodePtr) with “+” in the info field and pointers to addop_ and mulop_expression. You would have to write the code for make_node.

Method 1 Using Yacc

Lab 3 shows you some yacc code you can use (and perhaps edit) to create the nodes, as well as some C code to allocate and create nodes as well as printing the resultant tree.
As you saw in the lab, Yacc does have some built-in variables that makes this easier: $n refers to the value of the nth symbol on the right hand side of the rule; $$ refers to the value of the non terminal symbol on the left-hand side. Typically you write $$ = f($1, $2, ...$m) next to the production where f is a function written by you.

When you write $1, and that value has been assigned via $$ in a previous production, the value is passed up the tree.
For example,

addop_expr : addop_expr ADDOP mulop_expr { $$ =

 make_node("+",$1,$3); }

During parsing a node will be created, pointers to the left and right will be entered into the correct fields and “$$” will contain a pointer to the current ast.

AND you will have to use, edit or write a “printtree” function that will be called from your main program after yacc has parsed and created the tree, e.g.,

int main (void) {return yyparse ();}{

…….
In addition to studying and editing the code from lab 3, you will want to read the yacc references to learn more about this. Here are some references:

http://www.unet.univie.ac.at/aix/aixprggd/genprogc/ie_prog_4lex_yacc.htm#A26F0736

http://dinosaur.compilertools.net/yacc/index.html
http://epaperpress.com/lexandyacc/ (has an example that creates an ast. Click on calculator on the left)

http://cs.gmu.edu/~white/CS540/Examples/
Method 2 Using javacc

You will use the JJTree tool to build your ast's. Below is an excerpt from the solution:

 options {

 IGNORE_CASE = false;

 OPTIMIZE_TOKEN_MANAGER = true;

 MULTI = false;

 STATIC = false;

 }

 PARSER_BEGIN(Javalet)

 import java.io.*;

 public class Javalet {

 public static void main(String[] args) throws ParseException,

FileNotFoundException

 {

 if (args.length < 1) {

 System.out.println("Please pass in the filename for a parameter.");

 System.exit(1);

 }

 Javalet parser = new Javalet(new FileInputStream(args[0]));

 SimpleNode root = parser.program();

 root.dump("");

 System.out.println("Parse completed.");

 }

 }

 PARSER_END(Javalet)

 SKIP: /* Whitespace */

 {

 "\t"

 | "\n"

 | "\r"

 | " "

 }

 TOKEN: /* Most Things */

 {

 <IF: "if">

 | <ELSE: "else">

 | <TYPE: "void">

 | <VARIABLE_TYPE: "int">

 | <LPAREN: "(">

 | <RPAREN: ")">

 | <LBRACE: "{">

 | <RBRACE: "}">

 | <COMMA: ",">

 | <SEMICOLON: ";">

 | <WHILE: "while">

 | <DO: "do">

 | <FOR: "for">

 }

 TOKEN: /* Expression Tokens */

 {

 <ADDOP: "+" | "-">

 | <MULOP: "*" | "/" | "%">

 | <ASSIGNOP: "=">

 | <NOT: "!">

 | <AND: "&&">

 | <OR: "||">

 | <RELOP: "!=" | "==">

 | <LTGT: ">" | "<" | ">=" | "<=">

 }

 TOKEN: /* Generic Name & Number */

 {

 <NUMBER: (["0"-"9"])+>

 | <NAME: ["a"-"z","A"-"Z"] (["a"-"z","A"-"Z","0"-"9","_"])*>

 }

 SimpleNode program() :

 {}

 {

 method_declaration() <EOF> { return jjtThis; }

 }

 void method_declaration() :

 {

Token tok1, tok2;

 } {

 (tok1=<TYPE>|tok1=<VARIABLE_TYPE>) tok2=<NAME> <LPAREN> <RPAREN>

 <LBRACE> statement_block() <RBRACE>

 {

jjtThis.ovalue = tok1.image;

jjtThis.value = tok2.image;

 }

 }

 void statement_block() #void :

 {}

 {

 (statement())*

 }

 void statement() #void :

 {}

 {

 simplestatement() <SEMICOLON>

 | compoundstatement()

 | <LBRACE> statement_block() <RBRACE>

 }

 void simplestatement() #void :

 {}

 {

 declarativestatement() | assignmentstatement()

 }

 void declarativestatement() :

 {

Token tok1;

 } {

 tok1=<VARIABLE_TYPE> assignmentstatement() (<COMMA> assignmentstatement())*

 {

jjtThis.value = tok1.image;

 }

 }

 void assignmentstatement() :

 {

Token temp;

 } {

 temp=<NAME> [<ASSIGNOP> expression()]

 {

jjtThis.value = temp.image;

 }

 }

Important notes:

· By default, all productions become a node of the same name. The name can be changed by putting "#name" after the production decalaration (but before the colon) "#void" will make sure that the node isn't created.

· The file now needs to be called 'Javalet.jjt', not 'Javalet.jj'. (JJTree is a preprocessor to convert JJT->JJ)

Before you begin, you may want to download my SimpleNode.java
The process is:

1. Run jjtree on Javalet.jjt which creates Javalet.jj and some .java files

jjtree Javalet.jjt
2. Edit SimpleNode.java if you haven't already put my version in your directory.

Look at mine and the generated one to see what to change or just use mine

3. Run javacc on Javalet.jj creating Javalet.java (and some other files)

javacc Javalet.jj
4. Run javac on Javalet.java creating Javalet.class (and some other files)

javac Javalet.java
5. Run java on Javalet.class and an input file

java Javalet input.a

More ast examples:

Example 2 Abstract Syntax Tree for If (a < b) m = 2;

[image: image4.png]

This might be printed out:

(IF ("<" ("a" "b")) (= ("m" "2")))

or perhaps

(IF

 (

 "<" ("a" "b")

 = ("m" "2")

)

)

Example 3 Abstract Syntax Tree for WHILE (a < b) m = 2 ;

[image: image5.png]

This might be printed out:

(WHILE ("<" ("a" "b")) (= ("m" "2")))

or

(WHILE (

 "<" ("a" "b")

 = ("m" "2")

)

)

(Lots of variations on the output notation are possible, of course; just make sure it's clear.)

Consider the following program:

void input_a() {

 integer a, bb, xyz, b3, c, p, q;

 real b;

 a = b3;

 b = -2.5;

 xyz = 2 + a + bb + c - p / q;

 a = xyz * (p + q);

 p = a - xyz - p;

}

Its ast might be printed out:

Unit [

 Line(1)

 (void (input_a)
 Line(2)

 (int

 (a bb xyz b3 c p q))

 (real

 (b))
 Line(4)

 (=

 (a b3))

 Line(5)

 (=

 (xyz

 (+

 (a

 (+

 (b

 (-

 (c

 (/

 (p q))))))))))

 Line(6)

 (=

 (a

 (*

 (xyz

 (+

 (p q))))))

 Line(7)

 (=

 (p

 (-

 ((-

 (a xyz))

 p))))

 Line(8)

 EndVoid)]

The output need not look exactly like that above, but you should print out line numbers (if you can) and somehow show the ast structure. Do the line numbers after everything else is working because they are hard!
Run your program on the usual four inputs (including one of your own). Don’t forget to include the pow function.
Turn in: your updated documentation which includes the grammar, inputs, lex and yacc or javacc programs, and the output ast’s. By now, your documentation should be getting quite long. Include the names of any sources (people, the web etc.) that you consulted in the process of doing this assignment.

