Name: _______________

COMPILERS

Final Exam

November 23, 2009

1.
(1 Point) The grammar S aSbS |  is

a) Left recursive

b) LL(1)

c) Ambiguous

d) None of these

2.
(1 Point) The grammar S aSb | a is

a) Left recursive

b) LL(1)

c) Ambiguous

d) None of these

3.
(1 Point) The grammar S Sab |  is

a) Left recursive

b) LL(1)

c) Ambiguous

d) None of these

4.
(1 Point) For the grammar S a S T | , T  a T b | , the handle of

 a S a a T b b is

a) a S a

b) a T b

c) a S a a T b

d) None of these

5.
(1 Point) If the items A  a  c and S  c  occur in the same state, there is

a) A shift-reduce conflict

b) A shift-reduce conflict only if c  FOLLOW (A)

c) A shift-reduce conflict only if c  FOLLOW (S)

d) A reduce-reduce error only if c  FOLLOW (A)

e) No error

6. (1 Point) Synthesized attributes are computed by

a) The scanner

b) Ascending the tree

c) Descending the tree

d) None of these

7.
(1 Point) For a given grammar G with alphabet , L(G) =

a) {w  * | S  w}

b) {w  * | w* = w}

c) {w  * |  is in w}

d) {w  * | length(w) = n}

8.
(1 Point) For S  a S a | b S b | , L(G) =

a) (a U b)*

b) (0 U 1)*

c) {w | number of a’s in w = number of b’s in w}

d) Strings of a’s and b’s that read the same forward as backward

e) None of these

 9. (1 Point) The unix program lex
 a) creates a scanner generator

 b) creates a parser

 c) inputs regular expressions

 d) outputs regular expressions

 e) outputs a parse tree

 e) None of these

 10. (1 Point) The unix program yacc

 a) creates a scanner generator

 b) creates a parser

 c) inputs regular expressions

 d) outputs regular expressions

 e) outputs a parse tree

 e) None of these
11. (11 Points) Show that the following grammar is ambiguous
S  a S | S a | A

A  a A a | a

12. Consider the following grammar:

S  A a | b A c | d c | b d a

A  d

a) (5 Points) Using the definition of LL(1), show whether this grammar is LL(1) or not

b) (5 Points) Show whether this grammar is SLR(1)

13. Consider the following attribute grammar over the alphabet {0, 1} with Start symbol O. The symbol “o” means “concatenate” (put together).

Grammar Semantic Actions
O  D O O0.val = D.val o O1.val
 | D O.val = D.val
D  0 D.val = 0 0 0

 | 1
 D.val = 0 0 1

 | 2 D.val = 0 1 0
 | 3 D.val = 0 1 1
 | 4 D.val = 1 0 0
 | 5 D.val = 1 0 1
 | 6 D.val = 1 1 0
 | 7 D.val = 1 1 1
a) (2 Points) Create a parse tree for 6 7.

b) (5 Points) Label the tree with the attribute and evaluate it

c) (1 Point) What is L(G)?
d) (1 Point) What did the attribute compute?
e) (1 Point) Is the attribute inherited or synthesized?

14. Consider the following algorithm (discussed in class) which puts out code using only one register.

Procedure CodeGen (Node)

{

 Case Node Type is:

 1. Expression Operator, Op:

IF neither child is a leaf THEN /* Result left in Reg */

{ CodeGen(LeftChild)

 Emit “Store Reg, T1 (= GetTemp)”

 CodeGen (RightChild)

 Emit “Store Reg, T2 (= GetTemp)”

 Emit “Load Temp1, Reg

 Emit “Op T2, Reg”

 }

 ELSE IF only one child is a leaf THEN

 {

 CodeGen(Other Child)

 Emit “Op LeafChild, Reg”

 }

 ELSE /* Both children are leaves */

 Emit “Load Left Child, Reg

 Emit “Op Right Child , Reg”

2. “=”:

If one child is a non-leaf node

CodeGen(Right Child)

Emit “Store Reg, @LeftChild”

Else

Emit “Load Right Child, Reg”

Emit “Store Reg, @LeftChild”

2. WHILE:

a)
(5 Points) Add the code that would generate code for WHILE, adjusting any other parts of the algorithm as necessary.

b)
(5 Points) Create an AST and use your algorithm on the following:

 While (a + 1) > b do x = a
#15. Using the following grammar

S  a S | b
Create an interpreter using lex and yacc which will count the number of a’s in the input string. Use yacc’s semantic actions (the $$ etc. stuff) to leave the count at the top of the tree. Do not worry about minor syntax errors:

a)
(5 Points) Lex file

b)
(5 Points) Yacc file with semantic actions (the $$ stuff) to compute the number of a’s.

