
Network/Socket Programming
in Java

Rajkumar Buyya

Network

Req
ue

st

Result

a client, a server, and network

Client
Server

Client machine
Server machine

Elements of C-S Computing

java.net

n Used to manage:
c URL streams
c Client/server sockets
c Datagrams

4

Part III - Networking
ServerSocket(1234)

Socket(“128.250.25.158”, 1234)

Output/write stream

Input/read stream

Server_name: “manjira.cs.mu.oz.au”

Server side Socket Operations

1. Open Server Socket:
ServerSocket server;
DataOutputStream os;

DataInputStream is;
server = new ServerSocket(PORT);

2. Wait for Client Request:
Socket client = server.accept();

3. Create I/O streams for communicating to clients
is = new DataInputStream(client.getInputStream());

os = new DataOutputStream(client.getOutputStream());

4. Perform communication with client
Receiive from client: String line = is.readLine();
Send to client: os.writeBytes("Hello\n");

5. Close sockets: client.close();
For multithreade server:
while(true) {

i. wait for client requests (step 2 above)
ii. create a thread with “client” socket as parameter (the thread creates streams (as in step
(3) and does communication as stated in (4). Remove thread once service is provided.

}

Client side Socket Operations

1. Get connection to server:
client = new Socket(server, port_id);

2. Create I/O streams for communicating to clients
is = new DataInputStream(client.getInputStream());

os = new DataOutputStream(client.getOutputStream());

3. Perform communication with client
Receiive from client: String line = is.readLine();

Send to client: os.writeBytes("Hello\n");

4. Close sockets: client.close();

7

A simple server (simplified code)

import java.net.*;
import java.io.*;
public class ASimpleServer {

public static void main(String args[]) {
// Register service on port 1234

ServerSocket s = new ServerSocket(1234);
Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket
OutputStream s1out = s1.getOutputStream();
DataOutputStream dos = new DataOutputStream (s1out);

// Send a string!
dos.writeUTF(“Hi there”);

// Close the connection, but not the server socket
dos.close();
s1out.close();
s1.close();

}
}

8

A simple client (simplified code)

import java.net.*;
import java.io.*;
public class SimpleClient {

public static void main(String args[]) throws IOException {
// Open your connection to a server, at port 1234

Socket s1 = new Socket("130.63.122.1",1234);
// Get an input file handle from the socket and read the input

InputStream s1In = s1.getInputStream();
DataInputStream dis = new DataInputStream(s1In);
String st = new String (dis.readUTF());
System.out.println(st);

// When done, just close the connection and exit
dis.close();
s1In.close();
s1.close();

}
}

Echo Server Client..

//client.java: client interface to server

import java.io.*;

import java.net.*;

public class client

{

int port_id;

String server; Socket slink;

DataOutputStream os;

DataInputStream is;

DataInputStream kbd;

public client(String args[])

{

server = args[0];

port_id = Integer.valueOf(args[1]).intValue();

try

{

slink = new Socket(server, port_id);

os = new DataOutputStream(slink.getOutputStream());

is = new DataInputStream(slink.getInputStream());

kbd = new DataInputStream(System.in);

}

Echo Server Client..

catch(UnknownHostException e)

{

System.err.println("Don't know about host: ");

System.exit(1);

}

catch(IOException e)

{

System.err.println("Could not get I/O for the
connection to "+server);

System.exit(1);

}

}

void communicate()

{

while(true)

{

try {

System.out.print("Enter Input <end to stop>: ");

Echo Server Client..

if(line.equals("end"))

{ os.close(); is.close(); slink.close();

break;

}

String line2 = is.readLine();

System.out.println("Output: "+line2);

}

catch(IOException e)

{ System.out.println(e); }

}

}

public static void main(String [] args)

{

if(args.length < 2)

{

System.out.println("Usage: java client
server_name port_id");

System.exit(1);

}

Echo Server ...
// server.java: echo server

import java.io.*;

import java.net.*;

public class server

{

// public final static int PORT = 4779;

public static void main(String [] args)

{

ServerSocket server = null;

DataOutputStream os = null;

DataInputStream is = null;

boolean shutdown = false;

if(args.length < 1)

{

System.out.println("Usage: java server
port_num");

System.exit(1);

}

int PORT = Integer.valueOf(args[0]).intValue();

catch(IOException e)

{

System.err.println("Could not get I/O for the
connection to: ");

}

while(!shutdown)

{

if(server != null)

{

try

{

Socket client = server.accept();

System.out.println("Connected");

InetAddress cip = client.getInetAddress();

System.out.println("Client IP Addr:
"+cip.toString());

is = new DataInputStream(
client.getInputStream());

os = new DataOutputStream(

Echo Server ...

if(line.startsWith("end"))

{

shutdown = true;

break;

}

os.writeBytes(line.toUpperCase());

os.writeBytes("\n");

System.out.println(line);

}

is.close(); client.close();

}

catch(UnknownHostException e)

{

System.err.println("Server Open fails");

}

catch(IOException e)

{

System.err.println("Could not get I/O for the connection

Echo Server ...

System.out.println("Server Down");

try {

server.close();

} catch(IOException e) {}

}

}

Echo Server

Server
Threads

Message Passing
Facility

Server Process

Client Process

Client Process

User Mode

Kernel Mode

Threads in Action...
Multithreaded Server

Client/Server Computing

Rajkumar Buyya

Client Server Definition

n“ server software accepts requests
for data from client software and
returns the results to the client”

Network

Req
ue

st

Result

a client, a server, and network

Client
Server

Client machine
Server machine

Elements of C-S Computing

Where Operations are Done

In CS Relationship “most of the
application processing is done on a
computer (client side), which obtains
application services (such as
database services) from another
computer (server side) in a master
slave configuration.

CS-Focus is on

n In client-server computing
major focus is on
SOFTWARE

Application Tasks

User InterfaceUser Interface

Presentation LogicPresentation Logic

Application LogicApplication Logic

Data Requests & ResultsData Requests & Results

Physical Data ManagementPhysical Data Management

Presentation Logic

Application Logic

DBMS

Client
Server

Network

Key
str

ok
e

Displays

Client (dumb) - Server Model

Presentation Logic

Client
Server

Network

Key
str

ok
e

Processed
Results

Application Logic

DBMS

True Client-Server Model

Client
Server

Network

Pro
ce

ss
ed

Que
rie

s

Processed
Results

Application Logic

DBMS

Application Logic

Presentation Logic

Distributed Client-Server Model

n Client-server computing is distributed
access, not a distributed computing.

calling
procedure

called
procedure

results=
bar(arguments)

results=
bar(arguments)

client stub
network transport

server stub
network transport

calling
procedure
(client)

called
procedure
(client)

results=
bar(arguments)

Network
Remote Procedure CallLocal Procedure Call

results

argum
ents

results

argum
ents

results

argum
ents

request m
essage

reply m
essage

reply m
essage

request m
essage

RPC Look and Feel like Local Calls

Client
Program

Client
Waiting

RPC Call

with Request

return ()

reply Request Completed

return() answer

Service Call

Invoke Service

Service Daemon Listening

Network

Client Machine Server Machine

Service E
xecutes

May be the same machine

Flow Control in a Sychronous RPC

Server
Threads

Message Passing
Facility

Server Process
Client Process

Client Process

User Mode

Kernel Mode

Multithreaded Server

Categories of Servers

n File Server
n Data Server
n Compute Server
n Database Server
n Communication Server
n Video Server

File Server

n File Servers manage a work group’s application
and data files, so that they may be shared by the
group.

n Very I/O oriented
n Pull large amount of data off the storage

subsystem and pass the data over the network
n Requires many slots for network connections

and a large-capacity, fast hard disk subsystem.

Compute Server

n Performs Application logic processing
n Compute Servers requires

c processors with high performance capabilities
c large amounts of memory
c relatively low disk subsystems

n By separating data from the computation
processing, the compute server’s processing
capabilities can be optimized

Data Server

n Data-oriented; used only for data storage and
management

n Since a data server can serve more than one
compute server, compute-intensive applications
can be spread among multiple severs

n Does not prefer any application logic
processing

n Performs processes such as data
validation, required as part of the data
management function.

n Requires fast processor, large amount of
memory and substantial Hard disk capacity.

Data
Server

Compute
Server

Database Server

n Most typical use of technology in client-server
n Accepts requests for data, retrieves the data from

its database(or requests data from another
node)and passes the results back.

n Compute server with data server provides the
same functionality.

n The server requirement depends on the size of
database, speed with which the database must be
updated, number of users and type of network
used.

Communication Server

v Provides gateway to other LANs,
networks & Computers

v E-mail Server & internet server
v Modest system requirements

F multiple slots
F fast processor to translate

networking protocols

Internet Server

Internet Server
PC client

UNIX workstations

Local Area
Network

S Q L *
Forms

SQL *Net
TCP/IP

SQL *Net
TCP/IP

ORACL
E

UNIX Server

SQL *Net
TCP/IP

SQL *
Forms

ORACLE

Distributed processing
application connects to remote
database

Distributed database application
connects to local database which
connects to remote database

Database Configurations

File
servers

groupware
Distributed

objects

Database
servers

TP

monitors

19981994199019861982

First Wave Third WaveSecond Wave

Intergalactic era
client/server

Ethernet era
client/server

Client-Server Waves

Client Middleware Server

GUI/OOUI
Objects

Groupware

TP
monitor

DBMS

DSM
Operating System

SQL/IDAPI TxRPC Mail ORB

NetBIOS TCP/IP IPX/SPX SNA

Messaging Peer-to-peer

Directory Security Distributed file

SNMP CMIP DME

RPC

Service Specific

DSM

NOS

Transport Stack

Operating System

DSM

The Client/Server Infrastructure

