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java.net

n Used to manage:
c URL streams
c Client/server sockets
c Datagrams



4

Part III - Networking
ServerSocket(1234)

Socket(“128.250.25.158”, 1234)

Output/write stream

Input/read stream

Server_name: “manjira.cs.mu.oz.au”



Server side Socket Operations

1. Open Server Socket:
ServerSocket server;  
DataOutputStream os;

DataInputStream is;
server = new ServerSocket( PORT );

2. Wait for Client Request:
Socket client = server.accept();

3. Create I/O streams for communicating to clients
is = new DataInputStream( client.getInputStream() );

os = new DataOutputStream( client.getOutputStream() );

4. Perform communication with client
Receiive from client: String line = is.readLine(); 
Send to client: os.writeBytes("Hello\n");

5. Close sockets:    client.close();
For multithreade server:
while(true) {

i. wait for client requests (step 2 above)
ii. create a thread with “client” socket as parameter (the thread creates streams (as in step 
(3) and does communication as stated  in (4). Remove thread once service is provided.

}



Client side Socket Operations

1. Get connection to server:
client = new Socket( server, port_id );

2. Create I/O streams for communicating to clients
is = new DataInputStream( client.getInputStream() );

os = new DataOutputStream( client.getOutputStream() );

3. Perform communication with client
Receiive from client: String line = is.readLine(); 

Send to client: os.writeBytes("Hello\n");

4. Close sockets:    client.close();
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A simple server (simplified code) 

import java.net.*; 
import java.io.*;
public class ASimpleServer {

public static void main(String args[]) {
// Register service on port 1234

ServerSocket s = new ServerSocket(1234); 
Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket
OutputStream s1out = s1.getOutputStream();
DataOutputStream dos = new DataOutputStream (s1out);

// Send a string! 
dos.writeUTF(“Hi there”);

// Close the connection, but not the server socket
dos.close();
s1out.close();
s1.close();

}
}
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A simple client (simplified code) 

import java.net.*;
import java.io.*;
public class SimpleClient {

public static void main(String args[]) throws IOException {
// Open your connection to a server, at port 1234

Socket s1 = new Socket("130.63.122.1",1234);  
// Get an input file handle from the socket and read the input

InputStream s1In = s1.getInputStream();
DataInputStream dis = new DataInputStream(s1In);
String st = new String (dis.readUTF());
System.out.println(st);

// When done, just close the connection and exit
dis.close();
s1In.close();
s1.close();

}
}



Echo Server Client..

//client.java: client interface to server

import java.io.*;

import java.net.*;

public class client

{

int port_id;

String server; Socket slink;

DataOutputStream os;

DataInputStream is;

DataInputStream kbd;

public client( String args[] )

{

server = args[0];

port_id = Integer.valueOf(args[1]).intValue();

try

{

slink = new Socket( server, port_id );

os = new DataOutputStream( slink.getOutputStream() );

is = new DataInputStream( slink.getInputStream() );

kbd = new DataInputStream( System.in );

}



Echo Server Client..

catch( UnknownHostException e )

{

System.err.println( "Don't know about host: " );

System.exit(1);

}

catch( IOException e )

{

System.err.println( "Could not get I/O for the 
connection to "+server);

System.exit(1);

}

}

void communicate()

{

while(true)

{

try {

System.out.print("Enter Input <end to stop>: ");



Echo Server Client..

if( line.equals("end") )

{    os.close(); is.close(); slink.close();

break;

}

String line2 = is.readLine();

System.out.println("Output: "+line2);

}

catch( IOException e )

{    System.out.println(e); }

}

}

public static void main( String [] args )

{

if( args.length < 2 )

{

System.out.println("Usage: java client 
server_name port_id" );

System.exit(1);

}



Echo Server ...
// server.java: echo server

import java.io.*;

import java.net.*;

public class server

{

// public final static int PORT = 4779;

public static void main( String [] args )

{

ServerSocket server = null;

DataOutputStream os = null;

DataInputStream is = null;

boolean shutdown = false;

if( args.length < 1 )

{

System.out.println( "Usage: java server 
port_num" );

System.exit( 1 );

}

int PORT = Integer.valueOf(args[0]).intValue();



catch( IOException e )

{

System.err.println( "Could not get I/O for the 
connection to: ");

}

while(!shutdown)

{

if( server != null )

{

try

{

Socket client = server.accept();

System.out.println("Connected");

InetAddress cip = client.getInetAddress();

System.out.println( "Client IP Addr: 
"+cip.toString());  

is = new DataInputStream( 
client.getInputStream() );

os = new DataOutputStream( 

Echo Server ...



if( line.startsWith("end" ) )

{

shutdown = true;

break;

}

os.writeBytes(line.toUpperCase());

os.writeBytes("\n");

System.out.println(line);

}  

is.close(); client.close();

}

catch( UnknownHostException e )

{

System.err.println( "Server Open fails" );

}

catch( IOException e )

{

System.err.println( "Could not get I/O for the connection 

Echo Server ...



System.out.println( "Server Down" );

try {

server.close();

} catch(IOException e) {}

}

}

Echo Server 
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Client/Server Computing
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Client Server Definition

n“ server software accepts requests 
for data from client software and 
returns the results to the client”
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Where Operations are Done

In CS Relationship “most of the 
application processing is done on a 
computer (client side), which obtains 
application services (such as 
database services) from another 
computer (server side) in  a master 
slave configuration.



CS-Focus is on

n In client-server computing 
major focus is on 
SOFTWARE



Application Tasks

User InterfaceUser Interface

Presentation LogicPresentation Logic

Application LogicApplication Logic

Data Requests & ResultsData Requests & Results

Physical Data ManagementPhysical Data Management
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n Client-server computing is distributed 
access, not a distributed computing.
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Categories of Servers

n File Server
n Data Server
n Compute Server
n Database Server
n Communication Server
n Video Server



File Server

n File Servers manage a work group’s application 
and data files, so that they may be shared by the 
group.

n Very I/O oriented
n Pull large amount of data off the storage 

subsystem and pass the data over the network
n Requires many slots for network connections 

and a large-capacity, fast hard disk subsystem.



Compute Server

n Performs Application logic processing
n Compute Servers requires 

c processors with high performance capabilities  
c large amounts of memory  
c relatively low disk subsystems

n By separating data from the computation 
processing, the compute server’s processing 
capabilities can be optimized



Data Server

n Data-oriented; used only for data storage and 
management

n Since a data server can serve more than one 
compute server, compute-intensive applications 
can be spread among multiple severs

n Does not prefer any application     logic 
processing

n Performs processes such as          data 
validation, required as part         of the   data 
management function.

n Requires fast processor, large amount of 
memory and substantial Hard disk capacity.

Data 
Server

Compute
Server



Database Server

n Most typical use of technology in client-server
n Accepts requests for data, retrieves the data from 

its database(or requests data from another 
node)and passes the results back.

n Compute server with data server provides the 
same functionality.

n The server requirement depends on the size of 
database, speed with which the database must be 
updated, number of users and type of network 
used.



Communication Server

v Provides gateway to other LANs, 
networks & Computers

v E-mail Server & internet server
v Modest system requirements 

F multiple slots
F fast processor to translate                   

networking protocols
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Client Middleware Server

GUI/OOUI
Objects

Groupware

TP
monitor

DBMS

DSM
Operating System

SQL/IDAPI TxRPC Mail ORB

NetBIOS TCP/IP IPX/SPX SNA

Messaging Peer-to-peer    

Directory Security    Distributed file

SNMP  CMIP   DME       

RPC        

Service Specific

DSM

NOS

Transport Stack

Operating System

DSM

The Client/Server Infrastructure


