
Chapter 10 © 2003 by Addison Wesley Longman, Inc. 1

10.1 The Common Gateway Interface

- Markup languages cannot be used to specify
computations, interactions with users, or to
provide access to databases

- CGI is a common way to provide for these needs,
by allowing browsers to request the execution of
server-resident software

- CGI is just an interface between browsers and
servers

- An HTTP request to run a CGI program specifies a
program, rather than a document

- Servers can recognize such requests in two ways:

1. By the location of the requested file (special
subdirectories for such files)

2. A server can be configured to recognize
executable files by their file name extensions

- A CGI program can produce a complete HTTP
response, or just the URL of an existing document

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 2

10.2 CGI Linkage

- CGI programs often are stored in a directory named
cgi-bin

- Some CGI programs are in machine code, but Perl
programs are usually kept in source form, so
perl must be run on them

- A source file can be made to be “executable” by
adding a line at their beginning that specifies that
a language processing program be run on them
first

For Perl programs, if the perl system is stored in
/usr/local/bin/perl, as is often is in UNIX
systems, this is

#!/usr/local/bin/perl -w

- An HTML document specifies a CGI program with
the hypertext reference attribute, href, of an anchor
tag, <a>, as in

<a href =
"http://www.cs.uccs.edu/cgi-bin/reply.pl>"

Click here to run the CGI program, reply.pl

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 3

10.2 CGI Linkage (continued)

<!-- reply.html - calls a trivial cgi program
-->

<html>
<head>
<title>

HTML to call the CGI-Perl program reply.pl
</title>
</head>
<body>
This is our first CGI-Perl example
<a href =

"http://www.cs.ucp.edu/cgi-bin/reply.pl">
Click here to run the CGI program, reply.pl

</body>
</html>

- The connection from a CGI program back to the
requesting browser is through standard output,
usually through the server

- The HTTP header needs only the content type,
followed by a blank line, as is created with:

print "Content-type: text/html \n\n";

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 4

10.2 CGI Linkage (continued)

#!/usr/local/bin/perl
reply.pl – a CGI program that returns a
greeting to the user

print "Content-type: text/html \n\n",
"<html> <head> \n",
"<title> reply.pl example </title>",
" </head> \n", "<body> \n",
"<h1> Greetings from your Web server!",
" </h1> \n </body> </html> \n";

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 5

10.3 Query String Format

- A query string includes names and values of
widgets

- Widget values are always coded as strings

- The form of a name/value pair in a query string is:
name=value

- If the form has more than one widget, their values
are separated with ampersands

milk=2&payment=visa

- Each special character is coded as a percent sign
and a two-character hexadecimal number (the
ASCII code for the character)

- Some browsers code spaces a plus signs, rather
than as %20

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 6

10.4 The CGI.pm Module

- A Perl module serves as a library

- The Perl use declaration is used to make a module
available to a program

- To make only part of a module available, specify
the part name after a colon

(For our purposes, only the standard part of the
CGI module is needed)

use CGI ":standard";

- Common CGI.pm Functions

- “Shortcut” functions produce tags, using their
parameters as attribute values

- e.g., h2("Very easy!"); produces
<h2> Very easy! </h2>

- In this example, the parameter to the function
h2 is used as the content of the <h2> tag

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 7

10.4 The CGI.pm Module (continued)

- Tags can have both content and attributes

- Each attribute is passed as a name/value pair,
just as in a hash literal

- Attribute names are passed with a preceding
dash

textarea(-name => "Description",
-rows => "2",
-cols => "35"

);

Produces:

<textarea name ="Description" rows=2
cols=35> </textarea>

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 8

10.4 The CGI.pm Module (continued)

- If both content and attributes are passed to a
function, the attributes are specified in a hash
literal as the first parameter

a({-href => "fruit.html"},
"Press here for fruit descriptions");

Output:
Press here for fruit descriptions

- Tags and their attributes are distributed over
the parameters of the function

ol(li({-type => "square"},
["milk", "bread", "cheese"]));

Output:
<li type="square"milk
<li type="square"bread
<li type="square"cheese

- CGI.pm also includes non-shortcut functions, which
produce output for return to the user

- A call to header() produces:

Content-type: text/html;charset=ISO-8859-1
-- blank line --

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 9

10.4 The CGI.pm Module (continued)

- The start_html function is used to create the
head of the return document, as well as the
<body> tag

- The parameter to start_html is used as the title
of the document

start_html("Bill’s Bags");

DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"

"DTD/xhtml11-transitional.dtd">
<html xmlns=

"http://www.w3.org/1999/xhtml lang="en-US">
<head><title>Bill’s Bags</title>
</head><body>

- The param function is given a widget’s name; it
returns the widget’s value

- If the query string has name=Abraham in it,

param("name") will return "Abraham"

- The end_html function generates </body></html>

àSHOW popcorn.html , its display, and
popcorn.pl

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 10

10.5 A Survey Example

- We will use a form to collect survey data from
users

- The program needs to accumulate survey results,
which must be stored between form submissions

- Store the current results in a file on the server

- Because of concurrent use of the file, it must be
protected from corruption by blocking other
accesses while it is being updated

- Under UNIX, this can be done with the Perl
function, flock, using the parameter value 2 to
specify a lock operation and 8 to specify an
unlock operation

--> SHOW conelec.html and its display

- Two CGI programs are used for this application,
one to collect survey submissions and record the
new data, and one to produce the current totals

- The file format is eight lines, each having seven
values, the first four for female responses and the
last four for male responses

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 11

10.5 A Survey Example (continued)

- The program to collect and record form data must:

1. Decode the data in the query string

2. Determine which row of the file must be
modified

3. Open, lock, read, unlock, and close the survey
data file

4. Split the affected data string into numbers and
store them in an array

5. Modify the affected array element and join the
array back into a string

6. Open, lock, write, unlock, and close the survey
data file

--> SHOW conelec1.pl

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 12

10.5 A Survey Example (continued)

- Tables are easier to specify with CGI.pm

- The table is created with the table function

- The border attribute is specified as a parameter

- The table’s caption is created with a call to
caption, as the second parameter to table

- Each row of the table is created with a call to
Tr

- A heading row is created with a call to th

- Data cells are created with calls to td

- The calls to Tr, th, and td require references as
parameters

- Suppose we have three arrays of sales numbers,
one for each of three salespersons; each array
has one value for each day of the work week

- We want to build a table of this information,
using CGI.pm

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 13

10.5 A Survey Example (continued)

table({-border => "border"},
caption("Sales Figures"),
Tr(

[th(["Salesperson", "Mon", "Tues",
"Wed", "Thu", "Fri"]),

th("Mary").td(\@marysales),
th("Freddie").td(\@freddiesales),
th("Spot").td(\@spotsales),

]
)

);

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 14

10.5 A Survey Example (continued)

- The program that produces current results must:

1. Open, lock, read the lines into an array of
strings, unlock, and close the data file

2. Split the first four rows (responses from
females) into arrays of votes for the four age

groups

3. Unshift row titles into the vote rows (making
them the first elements)

4. Create the column titles row with th and put its
address in an array

5. Use td on each rows of votes

6. Push the addresses of the rows of votes onto
the row address array

7. Create the table using Tr on the array of row
addresses

8. Repeat Steps 2-7 for the last four rows of data
(responses from males)

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 15

10.5 A Survey Example (continued)

--> SHOW conelec2.pl
--> SHOW Figure 10.7

10.6 Cookies

- A session is the collection of all of the requests
made by a particular browser from the time the
browser is started until the user exits the browser

- The HTTP protocol is stateless

- But, there are several reasons why it is useful for
the server to relate a request to a session

- Shopping carts for many different simultaneous
customers

- Customer profiling for advertising

- Customized interfaces for specific clients

- Approaches to storing client information:

- Store it on the server – too much to store!

- Store it on the client machine - this works

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 16

10.6 Cookies (continued)

- A cookie is an object sent by the server to the
client

- Cookies are created by some software system on
the server (maybe a CGI program)

- Every HTTP communication between the browser
and the server includes information in its header
about the message

- At the time a cookie is created, it is given a
lifetime

- Every time the browser sends a request to the
server that created the cookie, while the cookie
is still alive, the cookie is included

- A browser can be set to reject all cookies

- CGI.pm includes support for cookies

cookie(-name => a_cookie_name,
-value => a_value,
-expires => a_time_value);

- The name can be any string
- The value can be any scalar value
- The time is a number followed by a unit code

(d, s, m, h, M, y)

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 17

10.6 Cookies (continued)

- Cookies must be placed in the HTTP header at
the time the header is created

header(-cookie => $my_cookie);

- To fetch the cookies from an HTTP request, call
cookie with no parameters

- A hash of all current cookies is returned

- To fetch the value of one particular cookie, send
the cookie’s name to the cookie function

$age = cookie(age);

- Example:

A cookie that tells the client the time of his or her
last visit to this site

- Use the Perl function, localtime, to get the
parts of time

($sec, $min, $hour, $mday, $mon, $year,
$wday, $yday, $isdst) = localtime;

àà SHOW day_cookie.pl

Chapter 10 © 2003 by Addison Wesley Longman, Inc. 18

10.7 Animation Using CGI

- CGI was once a good way to create animation, but
now there are several better ways

- There are two ways to use CGI to create animation,
neither of which requires user intervention

1. Client-pull animation

- The client repeatedly requests images from the
server, which it displays in sequence

- Problems: Internet is not fast enough, and if
the approach were widely used, it would
pull down the speed of the whole Internet

2. Server-push animation

- The server sends the sequence of images to
the client, with delays between them

- Problems: Also creates a huge load on the
Internet, and it is supported only by
Netscape

