ﬁOrigins and Uses of Perl \

- Began in the late 1980s as a more powerful
replacement for the capabilities of awk (text file
processing) and sh (UNIX system administration)

- Now includes sockets for communications and
modules for OOP, among other things

- Now the most commonly used language for CGl,
In part because of its pattern matching capabilities

- Perl programs are usually processed the same way

as many Java programs, compilation to an
intermediate form, followed by interpretation

9.2 Scalars and Their Operations

- Scalars are variables that can store either numbers,
strings, or references (discussed later)

- Numbers are stored in double format; integers are
rarely used

- Numeric literals have the same form as in other
common languages

Chapter O ©2003 by Addison Wesley Longman, Inc. 1




/gScalars and Their Operations \

(continued)

- Perl has two kinds of string literals, those
delimited by double quotes and those delimited by

single quotes

- Single-quoted literals cannot include escape
sequences

- Double-quoted literals can include them

- In both cases, the delimiting quote can be
embedded by preceding it with a backslash

- If you want a string literal with single-quote
characteristics, but don’t want delimit it with
single quotes, use gx, where x is a new delimiter

- For double quotes, use qq

- If the new delimiter is a parenthesis, a brace, a
bracket, or a pointed bracket, the right delimiter
must be the other member of the pair

Qnull string can be " or /

2

Chapter O ©2003 by Addison Wesley Longman, Inc.



ﬁScalars and Their Operations \

(continued)

- Scalar type is specified by preceding the name with
as

- Name must begin with a letter; any number of
letters, digits, or underscore characters can follow

- Names are case sensitive

- By convention, names of variables use only
lowercase letters

- Names embedded in double-quoted string literals
are interpolated

e.g., If the value of $sal ary is 47500, the value of
"Jack makes $sal ary dollars per year”

IS "Jack makes 47500 dollars per year"

- Variables are implicitly declared

Is the null string)

- A scalar variable that has not been assigned a value
has the value undef (numeric value is 0; string value

L4

- Perl has many implicit variables, the most commo
of whichis $_

Chapter O ©2003 by Addison Wesley Longman, Inc. 3




ﬁScalars and Their Operations \

(continued)

- Numeric Operators
- Like those of C, Java, etc.

Operator Associativity
++, - - nonassociative
unary - right

* % right

* |, % left

binary +, - left

- String Operators
- Catenation - denoted by a period

e.g., If the value of $dessert is "appl e", the value
of $dessert . " pie" is "apple pie"

- Repetition - denoted by x
e.g., If the value of $greetingis "hello ", the

value of
$greeting x 3 IS "hello hello hello "

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 4




/@calars and Their Operations \

(continued)
- String Functions
- Functions and operators are closely related in Perl
- e.g., if cube Is a predefined function, it can be

called with either

cube(x) Or cube x

Name Parameters Result

chonp astring the string w/terminating
newline characters removed

| engt h a string the number of characters
in the string

| c a string the string with uppercase
letters converted to lower

uc a string the string with lowercase
letters converted to upper

hex a string the decimal value of the
hexadecimal number in the
string

join a character and the strings catenated
a list of strings together with the

character inserted between
them

Chapter O ©2003 by Addison Wesley Longman, Inc. 5




@Assignment Statements and Sim

Input and Output
- Assignment statements are as those in C++ & Java

- All Perl statements except those at the end of
blocks must be terminated with semicolons

- Comments are specified with #
- Keyboard Input

- Files are referenced in Perl programs with
filehandles

- STDI Nis the predefined filehandle for standard
input, the keyboard

- The line input operator is specified with
<filehandle>

$new = <STDI N>;

- If the input is a string value, we often want to trim
off the trailing newline, so we use

chonmp($new = <STDI N>) ;

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 6




@Assignment Statements and Sim

Input and Output (continued)
- Screen Output

print one or more string literals, separated by
commas

e.g., print "The answer is $result \n";

- Example program:

print "Please input the circle’s radius: ";
$radi us = <STDI N>;

$area = 3.14159265 * $radius * $radi us;
print "The area is: $area \n";

- One way to run a Perl program:

perl progl. pl

- Two useful flags:
- ¢ means compile only (for error checking)
-wmeans produce warnings for suspicious
stuff (you should always use this!)

- To get input from a file (read with <>):
per|l progl.pl progl. dat

Chapter O ©2003 by Addison Wesley Longman, Inc. 7




ﬁControl Statements \

- Control Expressions
1. Scalar-valued expressions

- If it’s a string, it's true unless it is either the null
string or it’'s " 0"

- If it’'s anumber, it’s true unless it is zero
2. Relational Expressions

- Operands can be any scalar-valued expressions

Numeric Operands String Operands
== eq
I = ne
< | t
> gt
<= | e
>= ge

- If a string operator gets a numeric operand, the
operand is coerced to a string; likewise for
numeric operators

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 8




ﬁControl Statements (continued) \

3. Boolean Expressions

- Operators: &&, || ,! (higher precedence), as well
as and, or, and not (lower precedence)

- See Table 9.4, p. 345, for the precedence and the
associativity of operators

- Assignment statements have values, so they can
be used as control expressions

whil e ($next = <STDI N>)

- Because EOF is returned as the null string, this
works

- The keyboard EOF is specified with:
Control+D for UNIX

Control+Z for Windows
COMMAND+. For Macintosh

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 9




/ﬁControl Statements (continued) \

- Selection Statements

i f (control expression) {
then-clause

}

[ else {
else-clause

1]

- Braces are required
- el si f clauses can be included

unl ess (control expression) {
unless-clause

}

- Uses the inverse of the value of the control
expression

- Loop Statements
whi | e (control expression) {

loop-body
}

until (control expression) {
&oop-body /
}

Chapter O ©2003 by Addison Wesley Longman, Inc. 10




ﬁControl Statements (continued) \

- Loop Statements (continued)

for (initial-expr; control-expr; increment-expr) {
loop-body
}

- The initial and increment expressions can be
‘comma’ expressions

- Switch - Perl does not have one

- Can be built with the | ast operator, which
transfers control out of the block whose label
IS given as its operand

SWTCH. { # SWTCH is the bl ock | abel
i f ($input eq "bunny") {

$r abbi t ++;
| ast SW TCH
}
if ($input eq "puppy”) {
$dog++;
| ast SW TCH
}

print "\'$input is neither a bunny",
nor a puppy \n";

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 11




ﬁControl Statements (continued) \

- The implicit variable $_ is used as the default
operand for operators and the default parameter
in function calls

whil e (<STDI N>) {

print;
chonp;
if ($_ eq "gold") {
print "I"'mrich, I"'mrich!t!l \n";
}

9.5 Fundamentals of Arrays

- Perl arrays store only scalar values, which can
store strings, numbers, and references

- A list is an ordered sequence of scalar values

- A list literal is a parenthesized list of scalar
expressions

- Used to specify lists in programs

- Examples:
("Apples", $sum/ S$quantity, 2.732e-21)
gw( Bob bi b Bi ng bobbl e)

Chapter O ©2003 by Addison Wesley Longman, Inc. 12




@Fundamentals of Arrays (continued}

- An array is a variable that can store alist
- Array names all begin with at signs (@
- Arrays can be assigned other arrays or list literals

@ist = (2, 4, 6, 8);
@ist2 = @i st;

- If an array is used where a scalar is expected, the
length of the array is used

@ist = (1, 55, 193);
$len = @ist; # $len now has the val ue 3

- A list literal that has only scalar names can be the
target of a list assignment

($one, $two, $three) = (1, 2, 3);

- When an array element is referenced or assigned,
the name is a scalar name

$list[3] = 17;
$age = $list[1];

- The length of an array is dynamic; it is always the
Qghest subscript that has been assigned, plus 1
(

It is NOT necessarily the number of elements

Chapter O ©2003 by Addison Wesley Longman, Inc. 13



@Fundamentals of Arrays (continu®

- The last subscript of an array is its name,
preceded by $#

- This value can be assigned
- Scalar context versus list context
- Often forced by an operator or a function

- Scalar context can be forced with the scal ar
function

- The f or each statement - to process arrays and
hashes

foreach $price (@rice list) {
$price += 0. 20;
}

- The f oreach variable acts as an alias for the
elements of the array
- List Operators

shift -removes and returns the first element of
its list operand

\\\\\‘$Ieft = shift @i st; 4/////

Chapter O ©2003 by Addison Wesley Longman, Inc. 14




@Fundamentals of Arrays (continued\

- List Operators (continued)
unshi ft - puts its second operand (a scalar of
a list) on the left end of its first operand
(an array)
unshift @ist, 47;
pop - a shift on the right end
push - an unshift of the right end

split - breaks strings into parts using a specific
character as the split character

$stuff = "233:466: 688";
$nunbers = split /:/, $stuff;

sort - sorts using string comparisons (numbers
are coerced to strings)

di e — like pri nt, except it also kills the program

die OError: division by zero in fucntion fun2 ;

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 15




@Fundamentals of Arrays (continued\

# process _nanes.pl - A sinple programto

# illustrate the use of arrays

# Input: Afile, specified on the conmand

# line, of lines of text, where each
# line is a person's nane

# Qutput: The input nanes, after all letters
# are converted to uppercase, in

# al phabeti cal order

$i ndex = 0;

# Loop to read the nanes and process them
whi | e($name = <>) {

# Convert the nane's letters to uppercase
# and put it in the nanmes array

$names[ $i ndex++] = uc($nane);

}

# Display the sorted |ist of nanes

print "\nThe sorted list of nanmes is:\n\n\n";
foreach $nane (sort @anes) {

print ("$nanme \n");
g -/

Chapter O ©2003 by Addison Wesley Longman, Inc. 16




@Hashes \

- Differ from arrays in two fundamental ways:

1. Arrays use numerics as indices, hashes use
strings

2. Array elements are ordered, hash elements are
not

- Hash names begin with percent signs (%

List literals are used to initialize hashes
- Can be comma-separated values, as in
%hashl = (" Monday", 10451, "Tuesday", 10580);

- Or, implication symbols can be used between a
key and its value, as in

%hash2 = (" Mnday" => 10451,
"Tuesday" => 10580);

- The left operand of => need not be quoted

- Subscripts are keys (strings) placed in braces

$sal ary = $sal ari es{"Joe Schnoe"};
$sal ari es{"M chel Angel 0"} = 1000000;

Chapter O ©2003 by Addison Wesley Longman, Inc. 17




@ Hashes (continued) \

- Elements can be deleted with del et e
delete $salaries{"Bill dinton"};

- Use exists to determine whether a key is in a hash
if (exists $sal ari es{" George Bush"})

- Keys and values can be moved from a hash to an
array with keys and val ues

foreach $nane (keys %al ari es) {
print
"Sal ary of $nane is: $sal ari es{$nanme} \n";

}

- Perl has a predefined hash named &NV, which
stores operating system environment variables
and their values (see Chapter 10)

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 18




@References \

- A reference is a scalar variable that references
another variable or a literal

- A reference to an existing variable is obtained
with the backslash operator

$ref sum = \$sum

- A reference to alist literal is created by placing the
literal in brackets

$ref list =[2, 4, 6, 8];

- A reference to a hash literal is created by placing
the literal in braces

$ref _hash = {Mom => 47, Dad => 48};
- All dereferencing in Perl is explicit

- For scalars, add a $ to the beginning

- For arrays and hashes,

1. Add a $ to the beginning of the name, or

2. Put the - > operator between the name and its
subscript
$ref _hash -> {"Mon'} = 48;

Chapter O ©2003 by Addison Wesley Longman, Inc. 19




@Functions \

- A function definition is the function header and a
block of code that defines its actions

- A function header is the reserved word sub and
the function’s name

- A function declaration is a message to the
compiler that the given name is a function that will
be defined somewhere in the program

- Syntactically, a function declaration is just the
function’s header

- Function definitions can appear anywhere in a
program

- Function calls can be embedded in expressions
(if they return something useful) or they can be
standalone statements (if they don’t)

- A function that has been previously declared can
be treated as a list operator

- A function can specify areturn value in two ways:
1. As the operand of areturn statement (a

function can have zero or more ret ur ns)
2. As the value of the last evaluated expression
in the function

Chapter O ©2003 by Addison Wesley Longman, Inc. 20




@Functions (continued) \

- Implicitly declared variables have global scope
- Variables can be forced to be local to a function
by naming them in a ny declaration, which can

include initial values

my $sum = O;
my ($total, $pi) = (0, 3.14159265);

- Parameters
- Actual parameters vs. formal parameters
- Pass-by-value is one-way, to the function
- Pass-by-reference is two-way

- Parameters are passed through the implicit array,
@ (implicitly copied in)

- Elements of @ are aliases for the actual
parameters

- Every function call has its own version of @

- In the called function, parameters can be
manipulated directly in @, or in local variables
Initialized to elements of @

Chapter O ©2003 by Addison Wesley Longman, Inc. 21



@ Functions (continued)

sub funl {

my($first) = $ |
++$first * ++3$ |

}

- Pass-by-reference parameters can be
iImplemented by passing references

sub subl {
ny($ref len, $ref list) = @;
my $count;
for ($count = 0; $count < $$ref |en;
$$ref |ist[$count ++]--){
}

- An example call to sub1l:

subl(\ $l en, \@wylist);

N

~

/

Chapter O ©2003 by Addison Wesley Longman, Inc.

22



@Functions (continued)

sub nedi an {
ny $len = $ [0];
ny @ist = @;
# Discard the first elenment of the array
shift(@ist);
# Sort the paraneter array
@ist = sort @i st;
# Conpute the nedi an
return $list[$Slen / 2];

} else { # length is even
return ($list[$len / 2] +

}

}  # End of function nedian

$nmed = nedian($len, @vy |ist);

N

$list[$len/ 2 - 1]) | 2;

~

if ($len %2 == 1) { # length is odd

print "The nmedian of \@y_list is: $ned \n";

Chapter O ©2003 by Addison Wesley Longman, Inc.

23



@ Pattern Matching \

- The pattern-matching operator is m but if slashes
are used to delimit the pattern operand, the m
can be omitted

- The default string against which the pattern is
matched isin $_

- Character and character-class patterns
- Metacharacters:\ | () [ 1 {} "% * + 2.

- A non-meta, or normal character matches itself

if (/gold/) {
print
"There's gold in that thar string!! \n";

}

- Metacharacters can match themselves if they are
backslashed

- The period matches any character except
newline

/a. b/ matches "aab", "abb", "ach", ...

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 24




@Pattern Matching (continued) \

- A character class is a string in brackets
[abc] means a | b | c

- A dash can be used to specify a range of
characters

[ A- Za- Z]
- If a character class begins with a circumflex,
It means the opposite

[ "A-Z] matches any character except an
uppercase letter

- Predefined character classes:

Name Equivalent Pattern  Matches

\ d [ 0- 9] a digit

\D [ 20- 9] not a digit

\'w [ A- Za- z_0- 9] aword character

\W [*"A-Za-z_0-9] not aword character

\'s [ \r\t\n\f] a whitespace character

\'S [~ \r\t\n\f] not a whitespace character

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 25




@Pattern Matching (continued) \

- Pattern Quantifiers
- pattern{n} means repeat the pattern n times
/ a{ 5} bc{5}/

- pattern* means repeat the pattern zero or more
times

[ a*bc*/

- pattern+ means repeat the pattern 1 or more
times

- pattern? means zero or one match
/\d*b?c+/
- Two more useful predefined patterns:

\ b - matches the boundary position between a\w
character and a \ Wcharacter, in either order

\ B- matches a non-word boundary

- These two do not match characters, they match

K positions between characters /

Chapter O ©2003 by Addison Wesley Longman, Inc. 26




@Pattern Matching (continued) \

- Binding Operators - to match against a string
other than the string in $_

$str =~ /\W;

$str '~ /\wW;

- Anchors - match positions, not characters

1.~ in front of a pattern (not in a character class)
means the pattern must match at the beginning

2. $ at the end of a pattern means the pattern must
match at the end
- Pattern modifiers (after the pattern)

1.i makes letters in the pattern match either
uppercase or lowercase

2. x allows whitespace in the pattern, including
comments

N /

Chapter O ©2003 by Addison Wesley Longman, Inc. 27




@Pattern Matching (continued) \

- Remembering matches
- After the match, the implicit variables $1, $2, ...
have the parts of the string that matched the
first, second, ... parenthesized subpattern

"John Fitzgeral d Kennedy" =~
F(\w) (Vw) (\w) [

Now, $1 has "John", $2 has "Fi t zgeral d", and $3
has " Kennedy"

- Inside the pattern,\ 1,\ 2, ... can be used
$° has the part of the string before the part that
matched
$& has the part of the string that matched
$' has the part of the string after the part that
matched
- Substitutions

- Used to find and replace a substring

s/ Pattern/ New_String/

$_ = "Darcy is her name, yes, it’'s Darcy"
s/ Dar cy/ Dar ci e/ ;

Chapter O ©2003 by Addison Wesley Longman, Inc. 28




@Pattern Matching (continued) \

- Substitutions (continued)
- Modifiers

- The g modifier means find and replace all of
them in the string

- The e modifier means the New_String must be
interpreted as Perl code

- Example: Find a single hex character and
replace it with its decimal value

s/ %[\ dA-Fa-f])/pack("C', hex($1))/e:

- The i modifier does what it does for pattern
matching
- Transliterate Operator

- Translates a character or character class into
another character or character class

tr/a-z/l A-Z/;

K - Transliterates all lowercase letters to uppy

Chapter O ©2003 by Addison Wesley Longman, Inc. 29




@O File Input and Output \

- The open function is used to create the
connection between a filehandle and the external
name of afile; it also specifies the file’'s use
- A file's use is specified by attaching < (input),

> (output, starting at the beginning of the file),
or >> (output, starting at the end of the existing
file) to the beginning of its name

open (1 NDAT, "<prices");
open (CQUTDAT, ">averages");

- Because open can fail, it is usually used with di e

open (OQUTDAT, ">>sal aries") or
die "Error - unable to open salaries $!";

- One line of output to a file:
print OUTDAT "The answer is: $result \n";
- One line of input from a file:

$next = <| NDAT>;

- Buffers (of any size) of input can be read from a

Kfne with the r ead function /

Chapter O ©2003 by Addison Wesley Longman, Inc. 30




