
Chapter 9 © 2003 by Addison Wesley Longman, Inc. 1

9.1 Origins and Uses of Perl

- Began in the late 1980s as a more powerful
replacement for the capabilities of awk (text file
processing) and sh (UNIX system administration)

- Now includes sockets for communications and
modules for OOP, among other things

- Now the most commonly used language for CGI,
in part because of its pattern matching capabilities

- Perl programs are usually processed the same way
as many Java programs, compilation to an
intermediate form, followed by interpretation

9.2 Scalars and Their Operations

- Scalars are variables that can store either numbers,
strings, or references (discussed later)

- Numbers are stored in double format; integers are
rarely used

- Numeric literals have the same form as in other
common languages

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 2

9.2 Scalars and Their Operations
(continued)

- Perl has two kinds of string literals, those
delimited by double quotes and those delimited by
single quotes

- Single-quoted literals cannot include escape
sequences

- Double-quoted literals can include them

- In both cases, the delimiting quote can be
embedded by preceding it with a backslash

- If you want a string literal with single-quote
characteristics, but don’t want delimit it with
single quotes, use qx, where x is a new delimiter

- For double quotes, use qq

- If the new delimiter is a parenthesis, a brace, a
bracket, or a pointed bracket, the right delimiter
must be the other member of the pair

- A null string can be '' or ""

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 3

9.2 Scalars and Their Operations
(continued)

- Scalar type is specified by preceding the name with
a $

- Name must begin with a letter; any number of
letters, digits, or underscore characters can follow

- Names are case sensitive

- By convention, names of variables use only
lowercase letters

- Names embedded in double-quoted string literals
are interpolated

e.g., If the value of $salary is 47500, the value of
"Jack makes $salary dollars per year"

is "Jack makes 47500 dollars per year"

- Variables are implicitly declared

- A scalar variable that has not been assigned a value
has the value undef (numeric value is 0; string value
is the null string)

- Perl has many implicit variables, the most common
of which is $_

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 4

9.2 Scalars and Their Operations
(continued)

- Numeric Operators
- Like those of C, Java, etc.

Operator Associativity
++, -- nonassociative
unary - right
** right
*, /, % left
binary +, - left

- String Operators
- Catenation - denoted by a period

e.g., If the value of $dessert is "apple", the value
of $dessert . " pie" is "apple pie"

- Repetition - denoted by x

e.g., If the value of $greeting is "hello ", the
value of
$greeting x 3 is "hello hello hello "

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 5

9.2 Scalars and Their Operations
(continued)

- String Functions

- Functions and operators are closely related in Perl
- e.g., if cube is a predefined function, it can be

called with either

cube(x) or cube x

Name Parameters Result

chomp a string the string w/terminating
newline characters removed

length a string the number of characters
in the string

lc a string the string with uppercase
letters converted to lower

uc a string the string with lowercase
letters converted to upper

hex a string the decimal value of the
hexadecimal number in the
string

join a character and the strings catenated
a list of strings together with the

character inserted between
them

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 6

9.3 Assignment Statements and Simple
Input and Output

- Assignment statements are as those in C++ & Java

- All Perl statements except those at the end of
blocks must be terminated with semicolons

- Comments are specified with #

- Keyboard Input

- Files are referenced in Perl programs with
filehandles

- STDIN is the predefined filehandle for standard
input, the keyboard

- The line input operator is specified with
<filehandle>

$new = <STDIN>;

- If the input is a string value, we often want to trim
off the trailing newline, so we use

chomp($new = <STDIN>);

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 7

9.3 Assignment Statements and Simple
Input and Output (continued)

- Screen Output

print one or more string literals, separated by
commas

e.g., print "The answer is $result \n";

- Example program:

print "Please input the circle’s radius: ";
$radius = <STDIN>;
$area = 3.14159265 * $radius * $radius;
print "The area is: $area \n";

- One way to run a Perl program:

perl prog1.pl

- Two useful flags:
-c means compile only (for error checking)
-w means produce warnings for suspicious

stuff (you should always use this!)

- To get input from a file (read with <>):
perl prog1.pl prog1.dat

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 8

9.4 Control Statements

- Control Expressions

1. Scalar-valued expressions

- If it’s a string, it’s true unless it is either the null
string or it’s "0"

- If it’s a number, it’s true unless it is zero

2. Relational Expressions

- Operands can be any scalar-valued expressions

Numeric Operands String Operands
== eq

!= ne

< lt

> gt

<= le

>= ge

- If a string operator gets a numeric operand, the
operand is coerced to a string; likewise for
numeric operators

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 9

9.4 Control Statements (continued)

3. Boolean Expressions

- Operators: &&, ||, ! (higher precedence), as well
as and, or, and not (lower precedence)

- See Table 9.4, p. 345, for the precedence and the
associativity of operators

- Assignment statements have values, so they can
be used as control expressions

while ($next = <STDIN>) …

- Because EOF is returned as the null string, this
works

- The keyboard EOF is specified with:

Control+D for UNIX
Control+Z for Windows
COMMAND+. For Macintosh

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 10

9.4 Control Statements (continued)

- Selection Statements

if (control expression) {
then-clause

}
[else {

else-clause
}]

- Braces are required
- elsif clauses can be included

unless (control expression) {
unless-clause
}

- Uses the inverse of the value of the control
expression

- Loop Statements

while (control expression) {
loop-body

}

until (control expression) {
loop-body
}

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 11

9.4 Control Statements (continued)

- Loop Statements (continued)

for (initial-expr; control-expr; increment-expr) {
loop-body

}

- The initial and increment expressions can be
‘comma’ expressions

- Switch - Perl does not have one

- Can be built with the last operator, which
transfers control out of the block whose label
is given as its operand

SWITCH: { # SWITCH is the block label
if ($input eq "bunny") {

$rabbit++;
last SWITCH;

}
if ($input eq "puppy") {

$dog++;
last SWITCH;

}
print "\$input is neither a bunny",

" nor a puppy \n";
}

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 12

9.4 Control Statements (continued)

- The implicit variable $_ is used as the default
operand for operators and the default parameter
in function calls

while (<STDIN>) {
print;
chomp;
if ($_ eq "gold") {

print "I’m rich, I’m rich!!! \n";
}

}

9.5 Fundamentals of Arrays

- Perl arrays store only scalar values, which can
store strings, numbers, and references

- A list is an ordered sequence of scalar values

- A list literal is a parenthesized list of scalar
expressions

- Used to specify lists in programs

- Examples:
("Apples", $sum / $quantity, 2.732e-21)
qw(Bob bib Bing bobble)

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 13

9.5 Fundamentals of Arrays (continued)

- An array is a variable that can store a list

- Array names all begin with at signs (@)

- Arrays can be assigned other arrays or list literals

@list = (2, 4, 6, 8);
@list2 = @list;

- If an array is used where a scalar is expected, the
length of the array is used

@list = (1, 55, 193);
$len = @list; # $len now has the value 3

- A list literal that has only scalar names can be the
target of a list assignment

($one, $two, $three) = (1, 2, 3);

- When an array element is referenced or assigned,
the name is a scalar name

$list[3] = 17;
$age = $list[1];

- The length of an array is dynamic; it is always the
highest subscript that has been assigned, plus 1
(It is NOT necessarily the number of elements)

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 14

9.5 Fundamentals of Arrays (continued)

- The last subscript of an array is its name,
preceded by $#

- This value can be assigned

- Scalar context versus list context

- Often forced by an operator or a function

- Scalar context can be forced with the scalar
function

- The foreach statement - to process arrays and
hashes

foreach $price (@price_list) {
$price += 0.20;

}

- The foreach variable acts as an alias for the
elements of the array

- List Operators

shift - removes and returns the first element of
its list operand

$left = shift @list;

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 15

9.5 Fundamentals of Arrays (continued)

- List Operators (continued)

unshift - puts its second operand (a scalar of
a list) on the left end of its first operand
(an array)

unshift @list, 47;

pop - a shift on the right end

push - an unshift of the right end

split - breaks strings into parts using a specific
character as the split character

$stuff = "233:466:688";
$numbers = split /:/, $stuff;

sort - sorts using string comparisons (numbers
are coerced to strings)

die – like print, except it also kills the program

die � Error: division by zero in fucntion fun2 ;

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 16

9.5 Fundamentals of Arrays (continued)

process_names.pl - A simple program to
illustrate the use of arrays
Input: A file, specified on the command
line, of lines of text, where each
line is a person's name
Output: The input names, after all letters
are converted to uppercase, in
alphabetical order

$index = 0;

Loop to read the names and process them

while($name = <>) {

Convert the name's letters to uppercase
and put it in the names array

$names[$index++] = uc($name);
}

Display the sorted list of names

print "\nThe sorted list of names is:\n\n\n";

foreach $name (sort @names) {
print ("$name \n");

}

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 17

9.6 Hashes

- Differ from arrays in two fundamental ways:

1. Arrays use numerics as indices, hashes use
strings

2. Array elements are ordered, hash elements are
not

- Hash names begin with percent signs (%)

- List literals are used to initialize hashes

- Can be comma-separated values, as in

%hash1 = ("Monday", 10451, "Tuesday", 10580);

- Or, implication symbols can be used between a
key and its value, as in

%hash2 = ("Monday" => 10451,
"Tuesday" => 10580);

- The left operand of => need not be quoted

- Subscripts are keys (strings) placed in braces

$salary = $salaries{"Joe Schmoe"};
$salaries{"Michel Angelo"} = 1000000;

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 18

9.6 Hashes (continued)

- Elements can be deleted with delete

delete $salaries{"Bill Clinton"};

- Use exists to determine whether a key is in a hash

if (exists $salaries{"George Bush"}) …

- Keys and values can be moved from a hash to an
array with keys and values

foreach $name (keys %salaries) {
print
"Salary of $name is: $salaries{$name} \n";

}

- Perl has a predefined hash named %ENV, which
stores operating system environment variables
and their values (see Chapter 10)

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 19

9.7 References

- A reference is a scalar variable that references
another variable or a literal

- A reference to an existing variable is obtained
with the backslash operator

$ref_sum = \$sum;

- A reference to a list literal is created by placing the
literal in brackets

$ref_list = [2, 4, 6, 8];

- A reference to a hash literal is created by placing
the literal in braces

$ref_hash = {Mom => 47, Dad => 48};

- All dereferencing in Perl is explicit

- For scalars, add a $ to the beginning

- For arrays and hashes,

1. Add a $ to the beginning of the name, or
2. Put the -> operator between the name and its

subscript
$ref_hash -> {"Mom"} = 48;

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 20

9.8 Functions

- A function definition is the function header and a
block of code that defines its actions

- A function header is the reserved word sub and
the function’s name

- A function declaration is a message to the
compiler that the given name is a function that will
be defined somewhere in the program

- Syntactically, a function declaration is just the
function’s header

- Function definitions can appear anywhere in a
program

- Function calls can be embedded in expressions
(if they return something useful) or they can be
standalone statements (if they don’t)

- A function that has been previously declared can
be treated as a list operator

- A function can specify a return value in two ways:

1. As the operand of a return statement (a
function can have zero or more returns)

2. As the value of the last evaluated expression
in the function

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 21

9.8 Functions (continued)

- Implicitly declared variables have global scope

- Variables can be forced to be local to a function
by naming them in a my declaration, which can
include initial values

my $sum = 0;
my ($total, $pi) = (0, 3.14159265);

- Parameters

- Actual parameters vs. formal parameters

- Pass-by-value is one-way, to the function

- Pass-by-reference is two-way

- Parameters are passed through the implicit array,
@_ (implicitly copied in)

- Elements of @_ are aliases for the actual
parameters

- Every function call has its own version of @_

- In the called function, parameters can be
manipulated directly in @_, or in local variables
initialized to elements of @_

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 22

9.8 Functions (continued)

sub fun1 {
my($first) = $_[0];
++$first * ++$_[1];
}

- Pass-by-reference parameters can be
implemented by passing references

sub sub1 {
my($ref_len, $ref_list) = @_;
my $count;
for ($count = 0; $count < $$ref_len;

$$ref_list[$count++]--){
}

}

- An example call to sub1:

sub1(\$len, \@mylist);

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 23

9.8 Functions (continued)

sub median {
my $len = $_[0];
my @list = @_;

Discard the first element of the array

shift(@list);

Sort the parameter array

@list = sort @list;

Compute the median

if ($len % 2 == 1) { # length is odd
return $list[$len / 2];

} else { # length is even
return ($list[$len / 2] +

$list[$len / 2 - 1]) / 2;
}

} # End of function median

$med = median($len, @my_list);
print "The median of \@my_list is: $med \n";

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 24

9.9 Pattern Matching

- The pattern-matching operator is m, but if slashes
are used to delimit the pattern operand, the m
can be omitted

- The default string against which the pattern is
matched is in $_

- Character and character-class patterns

- Metacharacters: \ | () [] { } ^ $ * + ? .

- A non-meta, or normal character matches itself

if (/gold/) {
print
"There's gold in that thar string!! \n";

}

- Metacharacters can match themselves if they are
backslashed

- The period matches any character except
newline

/a.b/ matches "aab", "abb", "acb", ...

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 25

9.9 Pattern Matching (continued)

- A character class is a string in brackets

[abc] means a | b | c

- A dash can be used to specify a range of
characters

[A-Za-z]

- If a character class begins with a circumflex,
it means the opposite

[^A-Z] matches any character except an
uppercase letter

- Predefined character classes:

Name Equivalent Pattern Matches

\d [0-9] a digit
\D [^0-9] not a digit
\w [A-Za-z_0-9] a word character
\W [^A-Za-z_0-9] not a word character
\s [\r\t\n\f] a whitespace character
\S [^ \r\t\n\f] not a whitespace character

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 26

9.9 Pattern Matching (continued)

- Pattern Quantifiers

- pattern{n} means repeat the pattern n times

/a{5}bc{5}/

- pattern* means repeat the pattern zero or more
times

/a*bc*/

- pattern+ means repeat the pattern 1 or more
times

- pattern? means zero or one match

/\d*b?c+/

- Two more useful predefined patterns:

\b - matches the boundary position between a \w
character and a \W character, in either order

\B - matches a non-word boundary

- These two do not match characters, they match
positions between characters

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 27

9.9 Pattern Matching (continued)

- Binding Operators - to match against a string
other than the string in $_

$str =~ /\w/;

$str !~ /\w/;

- Anchors - match positions, not characters

1. ^ in front of a pattern (not in a character class)
means the pattern must match at the beginning

2. $ at the end of a pattern means the pattern must
match at the end

- Pattern modifiers (after the pattern)

1. i makes letters in the pattern match either
uppercase or lowercase

2. x allows whitespace in the pattern, including
comments

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 28

9.9 Pattern Matching (continued)

- Remembering matches

- After the match, the implicit variables $1, $2, …
have the parts of the string that matched the
first, second, … parenthesized subpattern

"John Fitzgerald Kennedy" =~
/(\w+) (\w+) (\w+)/;

Now, $1 has "John", $2 has "Fitzgerald", and $3
has "Kennedy"

- Inside the pattern, \1, \2, … can be used

$` has the part of the string before the part that
matched

$& has the part of the string that matched
$’ has the part of the string after the part that

matched

- Substitutions

- Used to find and replace a substring

s/Pattern/New_String/

$_ = "Darcy is her name, yes, it’s Darcy"
s/Darcy/Darcie/;

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 29

9.9 Pattern Matching (continued)

- Substitutions (continued)

- Modifiers

- The g modifier means find and replace all of
them in the string

- The e modifier means the New_String must be
interpreted as Perl code

- Example: Find a single hex character and
replace it with its decimal value

s/%([\dA-Fa-f])/pack("C", hex($1))/e;

- The i modifier does what it does for pattern
matching

- Transliterate Operator

- Translates a character or character class into
another character or character class

tr/a-z/A-Z/;

- Transliterates all lowercase letters to upper

Chapter 9 © 2003 by Addison Wesley Longman, Inc. 30

9.10 File Input and Output

- The open function is used to create the
connection between a filehandle and the external
name of a file; it also specifies the file’s use

- A file’s use is specified by attaching < (input),
> (output, starting at the beginning of the file),

or >> (output, starting at the end of the existing
file) to the beginning of its name

open (INDAT, "<prices");
open (OUTDAT, ">averages");

- Because open can fail, it is usually used with die

open (OUTDAT, ">>salaries") or
die "Error - unable to open salaries $!";

- One line of output to a file:

print OUTDAT "The answer is: $result \n";

- One line of input from a file:

$next = <INDAT>;

- Buffers (of any size) of input can be read from a
file with the read function

