ﬁOverview of JavaScript \

- Originally developed by Netscape, as LiveScript

- Became a joint venture of Netscape and Sun in
1995, renamed JavaScript

- Now standardized by the European Computer
Manufacturers Association as ECMA-262
(also ISO 16262)

- JavaScript can be divided into three categories,
core (this chapter), client-side (Chapters 5 & 6),
and server-side (not covered in this book)

- We'll call collections of JavaScript code scripts,
not programs

- JavaScript and Java are only related through
syntax

- JavaScript is dynamically typed

- JavaScript’s support for objects is very different

- JavaScript be embedded in many different things,
th Its primary use is embedded in HTML /

documents

Chapter 4 ©2003 by Addison-Wesley, Inc. 1

ﬁOverview of JavaScript (Continueh

- JavaScript can be used to replace some of what
IS typically done with applets (except graphics)

- JavaScript can be used to replace some of what
Is done with CGI (but no file operations or
networking)

- User interactions through forms are easy

- The Document Object Model makes it possible to
support dynamic HTML documents with JavaScript

- Event-Driven Computation (See Chapter 5)
- User interactions with HTML documents in
JavaScript use the event-driven model of
computation

- User interactions with form elements can be
used to trigger execution of scripts

- Browsers and HTML/JavaScript Documents

- Document head gets function definitions and code
associated with widgets

- Document body gets code that is interpreted
&nce, when found by the browser /

Chapter 4 ©2003 by Addison-Wesley, Inc. 2

ﬁObject Orientation and JavaScrip\

- JavaScript is NOT an object-oriented programming
language

- Does not support class-based inheritance
- Cannot support polymorphism

- Has prototype-based inheritance, which is much
different

- JavaScript Objects:

- JavaScript objects are collections of properties,

which are like the members of classes in Java and
C++

- Properties can be data properties or method
properties

- JavaScript has primitives for simple types

- All JavaScript objects are accessed through

references

- All objects appear as lists of property-value pairs,
in which properties can be added or deleted
dynamically

Chapter 4 ©2003 by Addison-Wesley, Inc. 3

ﬁGeneral Syntactic Characteristi@

- For us, all JavaScript scripts will be embedded in
HTML documents

- Either directly, as the content of the <scri pt > tag
whose | anguage attribute is set to "JavaScri pt "

<script |anguage = "JavaScri pt">
-- JavaScript script —
</script>

- Or indirectly, as a file specified in the src
attribute of <scri pt>, as in

<script |anguage = "JavaScript"
src = "nmyScript.js">
</script>

- Identifier form: begin with a letter or underscore,
followed by any number of letters, underscores,
and digits

- Case sensitive

- 25 reserved words, plus future reserved words

- Comments: both// and /* ...*/

Chapter 4 ©2003 by Addison-Wesley, Inc. 4

(?aGeneral Syntactic CharacteristicA

(continued)

- Scripts are often hidden from browsers that do not
iInclude JavaScript interpreters by putting them in
special comments

<I--

-- JavaScript script —
[]-->

(Scripts are not hidden in the examples in the
book and in these notes)

- JavaScript statements usually do not need to be
terminated by semicolons, but we’ll do it

4.4 Primitives, Operations, &
Expressions

- All primitive values have one of the five primitive
types: Number, String, Boolean, Undefined, or
Null

N /

Chapter 4 ©2003 by Addison-Wesley, Inc. S

ﬁPrimitiveS, Operations, & \

EXpressions (continued)

- Number, String, and Boolean have wrapper
objects (Nunber, Stri ng, and Bool ean)

- In the cases of Number and String, primitive
values and objects are coerced back and forth
so that primitive values can be treated
essentially as if they were objects

- Numeric literals — just like Java

- All numeric values are stored in double-precision

floating point

- String literals are delimited by either ' or "

- Can include escape sequences (e.g., \t)

- Embedded variable names are NOT interpolated

- All String literals are primitive values

N /

Chapter 4 ©2003 by Addison-Wesley, Inc. 6

ﬁPrimitiveS, Operations, & \

EXpressions (continued)
- Boolean values aretrue and f al se
- The only Null value is nul |

- The only Undefined value is undefi ned

- JavaScript is dynamically typed — any variable can
be used for anything (primitive value or reference

to any object)

- The interpreter determines the type of a particular
occurrence of a variable

- Variables can be either implicitly or explicitly
declared

var sum = 0,
t oday = "Monday",
flag = fal se;

N /

Chapter 4 ©2003 by Addison-Wesley, Inc.

ﬁPrimitiveS, Operations, & \

EXpressions (continued)
- Numeric operators - ++, -- , +,-,*, /[, %

- All operations are in double precision
- Same precedence and associativity as Perl

- The mvat h Object
- f I oor, round, nax, m n, trig functions, etc.
- The Nunber Object
- Some useful properties.
MAX VALUE, M N_VALUE, NaN,
PCSI TI VE | NFI NI TY, NEGATI VE | NFI NI TY, PI

- €.9., Nunber . MAX_VALUE

- An arithmetic operation that creates overflow
returns NaN

- NaNis not == to any number, not even itself

- Test for it with i sNaN(x)

k\lun‘oer object has the method, t oSt ri ng /

Chapter 4 ©2003 by Addison-Wesley, Inc. 8

ﬁPrimitiveS, Operations, & \

EXpressions (continued)
- String catenation operator - +
- Coercions
- Catenation coerces numbers to strings

- Numeric operators (other than +) coerce strings to
numbers

- Conversions from strings to numbers that do
not work return NaN
- String properties & methods:
-length e.g.,,var len = strl.length; (aproperty)
- char At (position) e.g., str.charAt (3)

- i ndexdf (string) e.g.,str.indexOf (' B')

- substring(from, to) e.g.,str.substring(1, 3)

wmwer Case() e.g.,str.tolLowerCase() /

Chapter 4 ©2003 by Addison-Wesley, Inc. 9

ﬁPrimitiveS, Operations, & \

EXpressions (continued)

- Conversion functions (not called through string
objects, because they are not methods)

- par sel nt (string) and par seFl oat (string)

- The string must begin with a digit or sign and
have a legal number; otherwise NaNis returned

- The t ypeof operator

- Returns "nunber", "string", or "bool ean" for
primitives; returns "obj ect " for objects and nul |

- Assignment statements — just like C++ and Java

4.5 Screen Output

- The JavaScript model for the HTML document is
the Docunent object

- The model for the browser display window is
the W ndowobject

Chapter 4 ©2003 by Addison-Wesley, Inc. 10

ﬁScreen Output (continued) \

- The W ndowobject has two properties, docunent
and wi ndow, which refer to the Docunent and
W ndow objects, respectively

- The Docunent object has a method, wri te, which
dynamically creates content

- The parameter is a string, often catenated from
parts, some of which are variables

e.g., docunment. wite("Answer: " + result +
"
");

- The parameter is sent to the browser, so it can
be anything that can appear in an HTML
document (
, but not\ n)

- The W ndowobject has three methods for creating
dialog boxes, al ert, confi rm and pr onpt

- The default object is the current window, so the
object need not be included in the call to any of
these three

N /

Chapter 4 ©2003 by Addison-Wesley, Inc. 11

ﬁ Screen Output (continued) \

l.alert("Hej! \n");
- Parameter is plain text, not HTML
- Opens a dialog box which displays the
parameter string and an OK button
- It waits for the user to press the OK button

2.confirm("Do you want to continue?");

- Opens a dialog box and displays the parameter
and two buttons, &K and Cancel

- Returns a Boolean value, depending on which
button was pressed (it waits for one)

3. pronpt ("What is your nane?", "");
- Opens a dialog box and displays its string

parameter, along with a text box and two
buttons, K and Cancel

- The second parameter is for a default response
If the user presses K without typing a

K response in the text box (waits for OK) /
= SHOW. roots htm

Chapter 4 ©2003 by Addison-Wesley, Inc. 12

ﬁControl Statements \

- Similar to C, Java, and C++
- Compound statements are delimited by braces, but
compound statements are not blocks (cannot
declare local variables)
- Control expressions — three kinds
1. Primitive values
- If it Is a string, it is true unless it is empty or " 0"
- If it iIs a number, it is true unless it is zero
2. Relational Expressions
- The usual six: ==, =, <, >, <=, >=
- Operands are coerced if necessary
- If one is a string and one is a number, it
attempts to convert the string to a number
- If one is Boolean and the other is not, the

Boolean operand is coerced to a number
(1or0)

- The unusual two: === and ! ==
- Same as == and ! =, except that no coercions
are done (operands must be identical)

Chapter 4 ©2003 by Addison-Wesley, Inc. 13

ﬁControl Statements (continued) \

- Comparisons of references to objects are not
useful (addresses are compared, not values)

3. Compound Expressions
- The usual operators: &&, ||, and !

- The primitive values, true and f al se, must not
be confused with the Bool ean object
properties

- If a Bool ean object is used in a conditional
expression, it is false only if it is nul | or

undef i ned

- The Bool ean object has a method, t oSt ri ng,
to allow them to be printed (true or f al se)

- Selection Statements

- The usual i f-then-el se (clauses can be either
single statements or compound statements)

N /

Chapter 4 ©2003 by Addison-Wesley, Inc. 14

ﬁControl Statements (continued) \

- Switch

swtch (expression) {
case val ue_1:
/'l value 1 statenents
case val ue_2:
/1l value 2 statenents

[def aul t:
/1l default statenents]

- The statements can be either statement
sequences or compound statements

- In most situations, the cases end with br eak

- The control expression can be a number, a
string, or a Boolean

- Different cases can have values of different
types

(‘SHOW borders. ht m /

Chapter 4 ©2003 by Addison-Wesley, Inc. 15

ﬁControl Statements (continued) \

- Loop statements

whi | e (control_expression) statement or
compound

for (init; control; increment) statement or
compound
- init can have declarations, but the scope of such
variables is the whole script
do

statement or compound
whi | e (control_expression)

4.7 Object Creation and Modification

- Objects can be created with new

- The most basic object is one that uses the bj ect
constructor, as in

var nmyCbj ect = new Object ();

- The new object has no properties - a blank object
x:’roperties can be added to an object, any ti@/

Chapter 4 ©2003 by Addison-Wesley, Inc. 16

ﬁObject Creation and Modificatiom
(continued)

var nyAi rpl ane = new Obj ect ();
rryAI r pI ane. make = "Cessna" .
nyAi rpl ane. nodel = "Centurian";

- Objects can be nested, so a property could be
itself another object, created with new

- Properties can be accessed by dot notation or
In array notation, as in

var propertyl = nyAirplane["nodel "];

- If you try to access a property that does not exist,
you get undefi ned

- Properties can be deleted with del et e, as in
del et e nyAi rpl ane. nodel ;
- Another Loop Statement

- for (identifier in object) statement or compound

for (var prop in nyAirplane)
docunent. wite(nyAi rplane[prop] + "
");

Chapter 4 ©2003 by Addison-Wesley, Inc. 17

ﬁArrays \

- Objects with some special functionality

- Array elements can be primitive values or
references to other objects

- Length is dynamic - the | engt h property stores the
length

- Array objects can be created in two ways, with
new, Or by assigning an array literal

var nyList = new Array(24, "bread", true);
var nyList2 = [24, "bread", true];
var nyList3 new Array(24);

- The length of an array is the highest subscript to
which an element has been assigned, plus 1

nyList[122] = "bitsy"; [/ length is 123

- Because the | engt h property is writeable, you can
set it to make the array any length you like, as in

nyList.length = 150;
- This can also shorten the array (if the new length
Is less than the old length)
&)nly assigned elements take space /

Chapter 4 ©2003 by Addison-Wesley, Inc. 18

ﬁArrays (continued) \

- SHOW i nsert nanes. htn

- Array methods:

-join—e.g.,var listStr =1list.join(", ");
-reverse
- sort

- Coerces elements to strings and puts them in
alphabetical order

- concat —e.g., newLi st = |list.concat (47, 26);
-slice

listPart = list.slice(2, 5);

listPart2 = list.slice(2);
-toString

- Coerce elements to strings, if necessary, and
catenate them together, separated by
commas (exactly likejoin(", "))

- push, pop, unshi ft, and shi ft

k‘SHOW nested _arrays. htn /

Chapter 4 ©2003 by Addison-Wesley, Inc. 19

ﬁFunctions \

- functi on function_name([formal _parameters]) {
-- body -

}

- Return value is the parameter of ret urn
- If thereis no return, or if the end of the function
IS reached, undef i ned is returned
- If ret urn has no parameter, undefi ned is returned

- Functions are objects, so variables that reference
them can be treated as other object references
(can be passed as parameters, assigned to
variables, and be elements of an array)

- If fun is the name of a function,

ref fun = fun;
/* Now ref fun is a reference to fun */
ref fun(); /* Acall to fun */

- We place all function definitions in the head of the
the HTML document, and all calls in the body

- All variables that are either implicitly declared or
explicitly declared outside functions are global

- Variables explicitly declared in a function are local
knctions can be nested, but we won’t do it /

Chapter 4 ©2003 by Addison-Wesley, Inc. 20

ﬁFunctions (continued) \

- Parameters are passed by value, but when a
reference variable is passed, the semantics are
pass-by-reference

- There is no type checking of parameters, nor is the
number of parameters checked (excess actual
parameters are ignored, excess formal parameters
are set to undef i ned)

- All parameters are sent through a property array,
ar gunent s, which has the | engt h property

- SHOW par anet ers. ht M and Figure 4.9

- There is no clean way to send a primitive by
reference

- One dirty way is to put the value in an array and
send the array’s name

function bylO(a) {

a[0] *= 10;
}

var listx = new Array(1);

I.i.*.s,tx[O] = X;
by10(1i st x);
x = listx[0];

Chapter 4 ©2003 by Addison-Wesley, Inc. 21

@Functions (continued) \

- To sort something other than strings into
alphabetical order, write a function that performs
the comparison and send it to the sort method

- The comparison function must return a negative
number, zero, or a positive number to indicate
whether the order is ok, equal, or not

- For example, to sort numbers we could define
a simple comparison function, num or der, as

function numorder(a, b) {return a - b;}

- Now, we can sort an array named num | i st
with:

num | ist.sort(numorder);

N /

Chapter 4 ©2003 by Addison-Wesley, Inc. 22

@O An Example \

- Function nedi an: Given an array of numbers,
return the median of the array

function nmedian(list) {
list.sort(function (a, b)
{return a - b;});
var list len = list.|ength;

/'l Use the nodul us operator to determ ne
/'l whether the array's length is odd or
/1 even

/1l Use Math.floor to truncate nunbers

/1l Use Math.round to round nunbers

if ((list_len %2) == 1)
return list[Math.floor(list len / 2)];
el se
return Math.round((list[list len / 2 - 1]
+ list[list len/ 2]) I 2);
} /] end of function nmedian

N /

Chapter 4 ©2003 by Addison-Wesley, Inc. 23

{11 constructors \

- Used to initialize objects, but actually create the
properties

function pl ane(newhke, newl\bdel , newYear) {
t hi s. make = new\vhke;
t hi s. nodel = newiVbdel ;
this.year = newYear;

}

myPl ane = new pl ane(" Cessna",
" Cent ur ni an",
"1970");

- Can also have method properties

function displayPl ane() {

docunent . wite("Make: ", this. nmake,
n <br / >Il) ;
docunent . wite("Mdel: ", this.nodel,
n <br / >Il) ;
docunent. wite("Year: ", this.year,
n <br / >Il) ;

}

- Now add the following to the constructor:

this.display = displ ayPl ane;

N /

Chapter 4 ©2003 by Addison-Wesley, Inc. 24

@ Pattern Matching \

- Patterns are based on those of Perl

- JavaScript has two approaches to pattern-
matching operations, but we will cover just one

- Pattern-matching operations are methods of the
String object

1. sear ch(pattern)

- Returns the position in the object string of the
pattern (position is relative to zero); returns
-1 if it fails

var str = "d uckenhei ner";

var position = str.search(/n/);
/* position is now 6 */

2. repl ace(pattern, string)

- Finds a substring that matches the pattern and

replaces it with the string
(g modifier can be used)

var str = "Some rabbits are rabid";
str.replace(/rab/g, "tint);

str iIsnow "Sone tinbits are timd"
$1 and $2 are both set to "r ab"

25

Chapter 4 ©2003 by Addison-Wesley, Inc.

@ Pattern Matching (continued) \

3. mat ch(pattern)
- The most general pattern-matching method

- Returns an array of results of the pattern-
matching operation

- With the g modifier, it returns an array of the
substrings that matched

- Without the g modifier, first element of the
returned array has the matched substring,
the other elements have the values of $1, ...

var str = "My 3 kings beat your 2 aces";
var matches = str.match(/[ab]/Qg);

-matches issetto["b", "a", "a"]

4. split(parameter)
- Like the Perl spl it operator

- The parameter could be a string or a pattern

In either case, it is used to split the string into
substrings and returns an array of them

","and /,/ both work
K% SHOW f or ms_check. ht /

Chapter 4 ©2003 by Addison-Wesley, Inc. 26

@3 Debugging JavaScript \

- IE6
- Select I nt ernet Opti ons from the Tool s menu
- Choose the Advanced tab
- Uncheck the Di sabl e script debuggi ng box

- Check the Display a notification about every
script error box

- Now, a script error causes a small window to be
opened with an explanation of the error

- NS6
- Select Tasks, Tool s, and JavaScri pt Consol e
- A small window appears to display script errors

- Remember to d ear the console after using an
error message — avoids confusion

N /

Chapter 4 ©2003 by Addison-Wesley, Inc. 27

