
Chapter 4 © 2003 by Addison-Wesley, Inc. 1

4.1 Overview of JavaScript

- Originally developed by Netscape, as LiveScript

- Became a joint venture of Netscape and Sun in
1995, renamed JavaScript

- Now standardized by the European Computer
Manufacturers Association as ECMA-262
(also ISO 16262)

- JavaScript can be divided into three categories,
core (this chapter), client-side (Chapters 5 & 6),
and server-side (not covered in this book)

- We’ll call collections of JavaScript code scripts,
not programs

- JavaScript and Java are only related through
syntax

- JavaScript is dynamically typed

- JavaScript’s support for objects is very different

- JavaScript be embedded in many different things,
but its primary use is embedded in HTML
documents

Chapter 4 © 2003 by Addison-Wesley, Inc. 2

4.1 Overview of JavaScript (continued)

- JavaScript can be used to replace some of what
is typically done with applets (except graphics)

- JavaScript can be used to replace some of what
is done with CGI (but no file operations or
networking)

- User interactions through forms are easy

- The Document Object Model makes it possible to
support dynamic HTML documents with JavaScript

- Event-Driven Computation (See Chapter 5)

- User interactions with HTML documents in
JavaScript use the event-driven model of
computation

- User interactions with form elements can be
used to trigger execution of scripts

- Browsers and HTML/JavaScript Documents

- Document head gets function definitions and code
associated with widgets

- Document body gets code that is interpreted
once, when found by the browser

Chapter 4 © 2003 by Addison-Wesley, Inc. 3

4.2 Object Orientation and JavaScript

- JavaScript is NOT an object-oriented programming
language

- Does not support class-based inheritance
- Cannot support polymorphism

- Has prototype-based inheritance, which is much
different

- JavaScript Objects:

- JavaScript objects are collections of properties,
which are like the members of classes in Java and
C++

- Properties can be data properties or method
properties

- JavaScript has primitives for simple types

- All JavaScript objects are accessed through
references

- All objects appear as lists of property-value pairs,
in which properties can be added or deleted
dynamically

Chapter 4 © 2003 by Addison-Wesley, Inc. 4

4.3 General Syntactic Characteristics

- For us, all JavaScript scripts will be embedded in
HTML documents

- Either directly, as the content of the <script> tag
whose language attribute is set to "JavaScript"

<script language = "JavaScript">

-- JavaScript script –
</script>

- Or indirectly, as a file specified in the src
attribute of <script>, as in

<script language = "JavaScript"
src = "myScript.js">

</script>

- Identifier form: begin with a letter or underscore,
followed by any number of letters, underscores,
and digits

- Case sensitive

- 25 reserved words, plus future reserved words

- Comments: both // and /* … */

Chapter 4 © 2003 by Addison-Wesley, Inc. 5

4.3 General Syntactic Characteristics
(continued)

- Scripts are often hidden from browsers that do not
include JavaScript interpreters by putting them in
special comments

<!--

-- JavaScript script –
//-->

(Scripts are not hidden in the examples in the
book and in these notes)

- JavaScript statements usually do not need to be
terminated by semicolons, but we’ll do it

4.4 Primitives, Operations, &
Expressions

- All primitive values have one of the five primitive
types: Number, String, Boolean, Undefined, or
Null

Chapter 4 © 2003 by Addison-Wesley, Inc. 6

4.4 Primitives, Operations, &
Expressions (continued)

- Number, String, and Boolean have wrapper
objects (Number, String, and Boolean)

- In the cases of Number and String, primitive
values and objects are coerced back and forth
so that primitive values can be treated
essentially as if they were objects

- Numeric literals – just like Java

- All numeric values are stored in double-precision
floating point

- String literals are delimited by either ' or "

- Can include escape sequences (e.g., \t)

- Embedded variable names are NOT interpolated

- All String literals are primitive values

Chapter 4 © 2003 by Addison-Wesley, Inc. 7

4.4 Primitives, Operations, &
Expressions (continued)

- Boolean values are true and false

- The only Null value is null

- The only Undefined value is undefined

- JavaScript is dynamically typed – any variable can
be used for anything (primitive value or reference
to any object)

- The interpreter determines the type of a particular
occurrence of a variable

- Variables can be either implicitly or explicitly
declared

var sum = 0,
today = "Monday",
flag = false;

Chapter 4 © 2003 by Addison-Wesley, Inc. 8

4.4 Primitives, Operations, &
Expressions (continued)

- Numeric operators - ++, --, +, -, *, /, %

- All operations are in double precision
- Same precedence and associativity as Perl

- The Math Object

- floor, round, max, min, trig functions, etc.

- The Number Object

- Some useful properties:
MAX_VALUE, MIN_VALUE, NaN,
POSITIVE_INFINITY, NEGATIVE_INFINITY, PI

- e.g., Number.MAX_VALUE

- An arithmetic operation that creates overflow
returns NaN

- NaN is not == to any number, not even itself

- Test for it with isNaN(x)

- Number object has the method, toString

Chapter 4 © 2003 by Addison-Wesley, Inc. 9

4.4 Primitives, Operations, &
Expressions (continued)

- String catenation operator - +

- Coercions

- Catenation coerces numbers to strings

- Numeric operators (other than +) coerce strings to
numbers

- Conversions from strings to numbers that do
not work return NaN

- String properties & methods:

- length e.g., var len = str1.length; (a property)

- charAt(position) e.g., str.charAt(3)

- indexOf(string) e.g., str.indexOf('B')

- substring(from, to) e.g., str.substring(1, 3)

- toLowerCase() e.g., str.toLowerCase()

Chapter 4 © 2003 by Addison-Wesley, Inc. 10

4.4 Primitives, Operations, &
Expressions (continued)

- Conversion functions (not called through string
objects, because they are not methods)

- parseInt(string) and parseFloat(string)

- The string must begin with a digit or sign and
have a legal number; otherwise NaN is returned

- The typeof operator

- Returns "number", "string", or "boolean" for
primitives; returns "object" for objects and null

- Assignment statements – just like C++ and Java

4.5 Screen Output

- The JavaScript model for the HTML document is
the Document object

- The model for the browser display window is
the Window object

Chapter 4 © 2003 by Addison-Wesley, Inc. 11

4.5 Screen Output (continued)

- The Window object has two properties, document
and window, which refer to the Document and
Window objects, respectively

- The Document object has a method, write, which
dynamically creates content

- The parameter is a string, often catenated from
parts, some of which are variables

e.g., document.write("Answer: " + result +
"
");

- The parameter is sent to the browser, so it can
be anything that can appear in an HTML
document (
, but not \n)

- The Window object has three methods for creating
dialog boxes, alert, confirm, and prompt

- The default object is the current window, so the
object need not be included in the call to any of
these three

Chapter 4 © 2003 by Addison-Wesley, Inc. 12

4.5 Screen Output (continued)

1. alert("Hej! \n");

- Parameter is plain text, not HTML

- Opens a dialog box which displays the
parameter string and an OK button

- It waits for the user to press the OK button

2. confirm("Do you want to continue?");

- Opens a dialog box and displays the parameter
and two buttons, OK and Cancel

- Returns a Boolean value, depending on which
button was pressed (it waits for one)

3. prompt("What is your name?", "");

- Opens a dialog box and displays its string
parameter, along with a text box and two
buttons, OK and Cancel

- The second parameter is for a default response
if the user presses OK without typing a
response in the text box (waits for OK)

àà SHOW roots.html

Chapter 4 © 2003 by Addison-Wesley, Inc. 13

4.6 Control Statements

- Similar to C, Java, and C++

- Compound statements are delimited by braces, but
compound statements are not blocks (cannot
declare local variables)

- Control expressions – three kinds

1. Primitive values

- If it is a string, it is true unless it is empty or "0"

- If it is a number, it is true unless it is zero

2. Relational Expressions

- The usual six: ==, !=, <, >, <=, >=

- Operands are coerced if necessary

- If one is a string and one is a number, it
attempts to convert the string to a number

- If one is Boolean and the other is not, the
Boolean operand is coerced to a number
(1 or 0)

- The unusual two: === and !==
- Same as == and !=, except that no coercions

are done (operands must be identical)

Chapter 4 © 2003 by Addison-Wesley, Inc. 14

4.6 Control Statements (continued)

- Comparisons of references to objects are not
useful (addresses are compared, not values)

3. Compound Expressions

- The usual operators: &&, ||, and !

- The primitive values, true and false, must not
be confused with the Boolean object
properties

- If a Boolean object is used in a conditional
expression, it is false only if it is null or
undefined

- The Boolean object has a method, toString,
to allow them to be printed (true or false)

- Selection Statements

- The usual if-then-else (clauses can be either
single statements or compound statements)

Chapter 4 © 2003 by Addison-Wesley, Inc. 15

4.6 Control Statements (continued)

- Switch

switch (expression) {
case value_1:

// value_1 statements
case value_2:

// value_2 statements
…
[default:

// default statements]
}

- The statements can be either statement
sequences or compound statements

- In most situations, the cases end with break

- The control expression can be a number, a
string, or a Boolean

- Different cases can have values of different
types

àà SHOW borders.html

Chapter 4 © 2003 by Addison-Wesley, Inc. 16

4.6 Control Statements (continued)

- Loop statements

while (control_expression) statement or
compound

for (init; control; increment) statement or
compound

- init can have declarations, but the scope of such
variables is the whole script

do

statement or compound
while (control_expression)

4.7 Object Creation and Modification

- Objects can be created with new

- The most basic object is one that uses the Object
constructor, as in

var myObject = new Object();

- The new object has no properties - a blank object

- Properties can be added to an object, any time

Chapter 4 © 2003 by Addison-Wesley, Inc. 17

4.7 Object Creation and Modification
(continued)

var myAirplane = new Object();
myAirplane.make = "Cessna";
myAirplane.model = "Centurian";

- Objects can be nested, so a property could be
itself another object, created with new

- Properties can be accessed by dot notation or
in array notation, as in

var property1 = myAirplane["model"];

- If you try to access a property that does not exist,
you get undefined

- Properties can be deleted with delete, as in

delete myAirplane.model;

- Another Loop Statement

- for (identifier in object) statement or compound

for (var prop in myAirplane)
document.write(myAirplane[prop] + "
");

Chapter 4 © 2003 by Addison-Wesley, Inc. 18

4.8 Arrays

- Objects with some special functionality

- Array elements can be primitive values or
references to other objects

- Length is dynamic - the length property stores the
length

- Array objects can be created in two ways, with
new, or by assigning an array literal

var myList = new Array(24, "bread", true);
var myList2 = [24, "bread", true];
var myList3 = new Array(24);

- The length of an array is the highest subscript to
which an element has been assigned, plus 1

myList[122] = "bitsy"; // length is 123

- Because the length property is writeable, you can
set it to make the array any length you like, as in

myList.length = 150;

- This can also shorten the array (if the new length
is less than the old length)

- Only assigned elements take space

Chapter 4 © 2003 by Addison-Wesley, Inc. 19

4.8 Arrays (continued)

à SHOW insert_names.html

- Array methods:

- join – e.g., var listStr = list.join(", ");

- reverse

- sort
- Coerces elements to strings and puts them in

alphabetical order

- concat – e.g., newList = list.concat(47, 26);

- slice
listPart = list.slice(2, 5);
listPart2 = list.slice(2);

- toString
- Coerce elements to strings, if necessary, and

catenate them together, separated by
commas (exactly like join(", "))

- push, pop, unshift, and shift

àà SHOW nested_arrays.html

Chapter 4 © 2003 by Addison-Wesley, Inc. 20

4.9 Functions

- function function_name([formal_parameters]) {
-- body –

}

- Return value is the parameter of return
- If there is no return, or if the end of the function

is reached, undefined is returned
- If return has no parameter, undefined is returned

- Functions are objects, so variables that reference
them can be treated as other object references
(can be passed as parameters, assigned to
variables, and be elements of an array)

- If fun is the name of a function,

ref_fun = fun;
/* Now ref_fun is a reference to fun */
ref_fun(); /* A call to fun */

- We place all function definitions in the head of the
the HTML document, and all calls in the body

- All variables that are either implicitly declared or
explicitly declared outside functions are global

- Variables explicitly declared in a function are local

- Functions can be nested, but we won’t do it

Chapter 4 © 2003 by Addison-Wesley, Inc. 21

4.9 Functions (continued)

- Parameters are passed by value, but when a
reference variable is passed, the semantics are
pass-by-reference

- There is no type checking of parameters, nor is the
number of parameters checked (excess actual
parameters are ignored, excess formal parameters
are set to undefined)

- All parameters are sent through a property array,
arguments, which has the length property

àà SHOW parameters.html and Figure 4.9

- There is no clean way to send a primitive by
reference

- One dirty way is to put the value in an array and
send the array’s name

function by10(a) {
a[0] *= 10;

}
...
var listx = new Array(1);
...
listx[0] = x;
by10(listx);
x = listx[0];

Chapter 4 © 2003 by Addison-Wesley, Inc. 22

4.9 Functions (continued)

- To sort something other than strings into
alphabetical order, write a function that performs
the comparison and send it to the sort method

- The comparison function must return a negative
number, zero, or a positive number to indicate
whether the order is ok, equal, or not

- For example, to sort numbers we could define
a simple comparison function, num_order, as

function num_order(a, b) {return a - b;}

- Now, we can sort an array named num_list

with:

num_list.sort(num_order);

Chapter 4 © 2003 by Addison-Wesley, Inc. 23

4.10 An Example

- Function median: Given an array of numbers,
return the median of the array

function median(list) {
list.sort(function (a, b)

{return a - b;});
var list_len = list.length;

// Use the modulus operator to determine
// whether the array's length is odd or
// even
// Use Math.floor to truncate numbers
// Use Math.round to round numbers

if ((list_len % 2) == 1)
return list[Math.floor(list_len / 2)];

else
return Math.round((list[list_len / 2 - 1]

+ list[list_len / 2]) / 2);
} // end of function median

Chapter 4 © 2003 by Addison-Wesley, Inc. 24

4.11 Constructors

- Used to initialize objects, but actually create the
properties

function plane(newMake, newModel, newYear){
this.make = newMake;
this.model = newModel;
this.year = newYear;

}

myPlane = new plane("Cessna",
"Centurnian",
"1970");

- Can also have method properties

function displayPlane() {
document.write("Make: ", this.make,

"
");
document.write("Model: ", this.model,

"
");
document.write("Year: ", this.year,

"
");
}

- Now add the following to the constructor:

this.display = displayPlane;

Chapter 4 © 2003 by Addison-Wesley, Inc. 25

4.12 Pattern Matching

- Patterns are based on those of Perl

- JavaScript has two approaches to pattern-
matching operations, but we will cover just one

- Pattern-matching operations are methods of the
String object

1. search(pattern)

- Returns the position in the object string of the
pattern (position is relative to zero); returns
-1 if it fails

var str = "Gluckenheimer";
var position = str.search(/n/);
/* position is now 6 */

2. replace(pattern, string)

- Finds a substring that matches the pattern and
replaces it with the string
(g modifier can be used)

var str = "Some rabbits are rabid";
str.replace(/rab/g, "tim");

str is now "Some timbits are timid"
$1 and $2 are both set to "rab"

Chapter 4 © 2003 by Addison-Wesley, Inc. 26

4.12 Pattern Matching (continued)

3. match(pattern)

- The most general pattern-matching method

- Returns an array of results of the pattern-
matching operation

- With the g modifier, it returns an array of the
substrings that matched

- Without the g modifier, first element of the
returned array has the matched substring,
the other elements have the values of $1, …

var str = "My 3 kings beat your 2 aces";
var matches = str.match(/[ab]/g);

- matches is set to ["b", "a", "a"]

4. split(parameter)
- Like the Perl split operator

- The parameter could be a string or a pattern
In either case, it is used to split the string into
substrings and returns an array of them

"," and /,/ both work

àà SHOW forms_check.html

Chapter 4 © 2003 by Addison-Wesley, Inc. 27

4.13 Debugging JavaScript

- IE6

- Select Internet Options from the Tools menu

- Choose the Advanced tab

- Uncheck the Disable script debugging box

- Check the Display a notification about every
script error box

- Now, a script error causes a small window to be
opened with an explanation of the error

- NS6

- Select Tasks, Tools, and JavaScript Console

- A small window appears to display script errors

- Remember to Clear the console after using an
error message – avoids confusion

