Name_____________________________

Compiler Exam
Fall 2007

#1. (2 points) Consider the following grammar:

S → A
A → A+A | B++
B → y

a) Draw the parse tree for the input “y + + + y + +”

b) Show a leftmost derivation of “y + + + y + +”

#2. (4 points) Consider the following grammar:

X → YaYb | ZbZa
Y → ε
Z → ε
a) Using the definition of LL(1), explain why the grammar is or is not LL(1).
b) Show whether the grammar is or is not SLR(1). (treat ““as a terminal)

#3. (6 points) Consider the following grammar with terminals [,], a, b, c, +, and -:

1 S → [S X]

2 | a
3 X → ε
4 | + S Y
5 | Y b
6 Y→ ε
7 | - S X c
(a) Fill in the table below with the First and Follow sets for the non-terminals in this grammar:

First

Follow

S

X

Y

b) Create the top-down parsing table

c) Using your table, parse [a+a-ac]
Stack Input Production

#4 The following context-free grammar describes part of the syntax of a simple programming language. Nonterminals are given in capitals and terminals in lower case.

VAR represents a variable name and CONST represents a constant. The productions for
ASSN-STMT are not given, as they do not affect the question.

1 PROGRAM → Procedure STMT-LIST

2 STMT-LIST → STMT STMT-LIST

3 | STMT

4 STMT → do VAR = CONST to CONST { STMT-LIST }

5 | ASSN-STMT

(a) (1 Point)Show the parse tree for the following:

Procedure

do i = 1 to 100 {

ASSN-STMT

ASSN-STMT

}

ASSN-STMT

 (b) (2 Points) Create attribute(s) and add semantic functions to the above grammar that compute the number of executed statements for a program conforming to this grammar. Write them beside the productions above.
c) (1 Point) Using the tree from part a, compute the value of your attributes.

d) Replacing ASSN-STMT with the terminal a, in the above grammar, create lex and yacc files that will compute the number of occurrences of this terminal a. Use yacc’s semantic facilities ($$ etc.). You will not be penalized for small syntax errors.
(i) (3 Points) LEX file:
(ii) (5 Points) YACC File:

#5. (2 points) State why/how worst case insertion in a simple hashed symbol table using chaining can be O(1)
#6. (6 points) Identify the cycles in the following and then show which are loops and which are not loops and why or why not.
a)
 [image: image1.png]

b)
[image: image2.png]

c)
[image: image3.png]B2

B1

B4

B3

#7. (8 points) Consider the following code which computes the inner product of 2 vectors:

 prod := 0;

 i := 1;

 repeat {
 prod := prod + a[i] * b[i]

 i = i+ 1;

 until i > 20

 }
Below is possible IR for this program:

(1) prod := 0

(2) i := 1

(3) t1 := 4 * i

(4) t2 := a[t1]

(5) t3 := 4 * i

(6) t4 := b[t3]

(7) t5 := t2 * t4

(8) t6 := prod + t5

(9) prod := t6

(10) t7 := i + 1

(11) i := t7

(12) if i <= 20 goto (3)

(13) …

a) Create Basic Blocks and the Control Flow Graph

b) Show Reaching Definitions on the graph

c) Show any optimizations you can find
d) Show assembler or pseudo assembler code for the program before and after optimization:

Responsible for anything included in the Modules.

Emphasis on those topics discussed in class and on the homeworks.

Know definitions of and be able to answer questions related to:

grammars

parse trees

derivations (leftmost, rightmost)

LL(1)

SLR(1)

FIRST, FOLLOW

top-down parsing (LL(1)) parsing

bottom-up (SLR(1)) parsing

attribute grammars

lex

yacc

symbol tables

run-time systems

CFA (basic blocks and CFG's)

loops

Reaching Definitions

Live Variables

Available Expressions

Very Busy Expressions

Code Generation algorithms

