Name ________________________________

COMP409

Final Exam

December 8, 2008

#1. Consider the following grammar with terminals a, b, and c.
0. E’ (E

1. E (E a T | T

2. T (T F | F

3. F (F b | c

a) (3 Points) Show a parse tree for: c b c a c b a c c b

b) (2 Points) Show a leftmost derivation of c b c a c b a c c b

#2. (5 Points) Show that the following grammar is ambiguous using the given sentence as an example.
Sentence: a + b * c

Grammar:

T  P | id | T ‘*’ T

P  T ‘+’ T

#3. Consider the following grammar:

S (A a | b A c | d c | b d a

A (d

a) (5 Points) Using the definition of LL(1), show whether this grammar is LL(1) or not

b) (5 Points) Show whether this grammar is SLR(1)

#4. a) (5 Points) Add nonterminals and productions to the following grammar to compute exponential (Use “^”).

E (E + T | T

T (T * F | F

F ((E) | d

Where d represents any digit 0 – 9.

New grammar:

b) (2 Points) Show a parse tree for 2 + 3*4^5

c) (3 Points) Show an abstract syntax tree for 2 + 3*4^5

 d) (2 Points) Show quadruples for 2 + 3*4^5
#5. Consider the following algorithm (discussed in class) which puts out code using only one register.

Procedure CodeGen (Node)

{

 Case Node Type is:

 1. Expression Operator, Op:

IF neither child is a leaf THEN /* Result left in Reg */

{ CodeGen(LeftChild)

 Emit “Store Reg, T1 (= GetTemp)”

 CodeGen (RightChild)

 Emit “Store Reg, T2 (= GetTemp)”

 Emit “Load Temp1, Reg

 Emit “Op T2, Reg”

 }

 ELSE IF only one child is a leaf THEN

 {

 CodeGen(Other Child)

 Emit “Op LeafChild, Reg”

 }

 ELSE /* Both children are leaves */

 Emit “Load Left Child, Reg

 Emit “Op Right Child , Reg”

2. “=”:

If one child is a non-leaf node

CodeGen(Right Child)

Emit “Store Reg, @LeftChild”

Else

Emit “Load Right Child, Reg”

Emit “Store Reg, @LeftChild”
3. WHILE:

a) (5 Points) Add the code that would generate code for WHILE, adjusting any other parts of the algorithm as necessary.

b) (3 Points) Create an AST and use your algorithm on the following:
 while a < b do max = b

#6. For the grammar of #1, repeated here:
0. E’ (E

1. E (E a T | T

2. T (T F | F

3. F (F b | c

a) (3 Points) Compute the following:

Follow(E) =
Follow(T) =
Follow(F) =
a) (5 Points) Create the LR(0) states

b) (5 Points) Create an SLR(1) parsing table.
c) (2 Points) Use your table to parse c a c c b $ (Note: if you discover an error, stop and finish the exam before coming back to fix it)
Stack Input Action
#7. Consider the following context-free grammar that generates regular expressions over the alphabet {a, b}.
a) (3 Points) Add attribute(s) and semantic functions that compute the maximum number of nested kleene star operators. For example, (a)* | ((b)* | a)* has depth 2. The semantic actions for the 3 base cases are given.

Grammar Semantic Actions
R (a R.depth = 0
 | b R.depth = 0

 |  R.depth = 0

 | R1R2
 | R1 | R2

 | (R1) *
 | (R1)
b) (2 Points) Show a parse tree and evaluate attributes for (a)* | ((b)* | a)*
Extra Credit (2 Points)
[image: image1.png]Con

er the following code to

iz an array in C:

double AL100) (100); double A[100] (1001
for Gint 1 = 0; 3 < 100; 1+9) (for Gt 3 = 0; § < 100; 3e0) {
for Gt 3 = 0; § < 100; j+o) € for Gat 3 = 0; 4 < 100; i+ {
AGIG) =i+ 5 AWIG) =i v
> »
» »
Explain why the version on the lft may run significantly faster than the version on the right

[image: image2.png]Con

er the following code to

iz an array in C:

double AL100) (100); double A[100] (1001
for Gint 1 = 0; 3 < 100; 1+9) (for Gt 3 = 0; § < 100; 3e0) {
for Gt 3 = 0; § < 100; j+o) € for Gat 3 = 0; 4 < 100; i+ {
AGIG) =i+ 5 AWIG) =i v
> »
» »
Explain why the version on the lft may run significantly faster than the version on the right

#. a) Add nonterminals and productions to the following grammar to compute exponential (Use “^”).

 b) Show a parse tree for 2 + 3*4^5

