Name ________________________________

COMPILERS
Final Exam

July 23, 2009
1. (1 Point) The grammar S(aSbS |  is

a) Left recursive

b) LL(1)

c) Ambiguous

d) None of these

2. (1 Point) The grammar S(aSb | a is

a) Left recursive

b) LL(1)

c) Ambiguous

d) None of these

3. (1 Point) The grammar S(Sab |  is

a) Left recursive

b) LL(1)

c) Ambiguous

d) None of these

4. (1 Point) For the grammar S(a S T | , T (a T b | , the handle of a S a a T b b is

a) a S a

b) a T b

c) a S a a T b

d) None of these

5. (1 Point) If the items A (a (c and S (c (occur in the same state, there is

a) A shift-reduce conflict

b) A shift-reduce conflict only if c  FOLLOW (A)

c) A shift-reduce conflict only if c  FOLLOW (S)

d) A reduce-reduce error only if c  FOLLOW (A)

6. (1 Point) Synthesized attributes are computed by

a) The scanner

b) Ascending the tree

c) Descending the tree

d) None of these
7. (1 Point) Loops are

a) Cycles

b) Cycles whose tails dominate their heads

c) Cycles whose heads dominate their tails

d) Cycles with more than one entry
e) None of these
8. (1 Point) Static links show

a) Scoping

b) The previous activation record

c) The return point in the code

d) None of these

9. (1 Point) For a given grammar G with alphabet , L(G) =

a) {w  * | S (w}

b) {w  * | w* = w}

c) {w  * |  is in w}

d) {w  * | length(w) = n}

10. (1 Point) For S (a S a | b S b | , L(G) =

a) (a U b)*

b) (0 U 1)*

c) {w | number of a’s in w = number of b’s in w}

d) Strings of a’s and b’s that read the same forward as backward

e) None of these

11. (3 Points) Show that the following grammar is ambiguous using the given sentence as an example.
Sentence: a + b * c

Grammar:

T  P | id | T ‘*’ T

P  T ‘+’ T

12. Consider the following grammar:

S (A a | b A c | d c | b d a

A (d

a) (5 Points) Using the definition of LL(1), show whether this grammar is LL(1) or not

b) (5 Points) Show whether this grammar is SLR(1)

13. Consider the following context-free grammar that generates regular expressions over the alphabet {a, b}.
a) (5 Points) Add attribute(s) and semantic functions that compute the maximum number of nested kleene star operators. For example, (a)* | ((b)* | a)* has depth 2. The semantic actions for the 3 base cases are given.

Grammar Semantic Actions
R (a R.depth = 0
 | b R.depth = 0

 |  R.depth = 0
 | R1 | R2
 | (R1) * | (R1)

 | (R1) *

 | (R1)

b) (2 Points) Show a parse tree (don’t worry about being fancy) and evaluate attributes for (a)* | ((b)* | a)*

14. (9 Points) Using the following grammar

S (a S | b
Create an interpreter using lex and yacc which will count the number of a’s in the input string. Do not worry about minor syntax errors:

a) Lex file

b) Yacc file with semantic actions (the $$ stuff) to compute the number of a’s.
15. (3 Points)
[image: image1.png]Con

er the following code to

iz an array in C:

double AL100) (100); double A[100] (1001
for Gint 1 = 0; 3 < 100; 1+9) (for Gt 3 = 0; § < 100; 3e0) {
for Gt 3 = 0; § < 100; j+o) € for Gat 3 = 0; 4 < 100; i+ {
AGIG) =i+ 5 AWIG) =i v
> »
» »
Explain why the version on the lft may run significantly faster than the version on the right

