CS 503
Foundations of Computer Science
Final exam Solutions
Summer 2006
#1. (5 Points) Consider the language, L = {0*1n0*1n0* | n > 0} Using the pumping lemma, show that this language is not regular

If L were regular, then there exists a k such that for any z in L with

|z| > k, z = uvw, |uv| < k, |v| > 0, and uviw is also in L for all i > 0.

Pick z = 1k01k (lots of others to pick). Clearly z is in L and |z| > k.

Since |v| > 0, v = all 1’s
uv2w is supposed to be in L.

But uv2w = 1k+|v|01k which cannot be in L.
This is a contradiction, and so L cannot be regular

#2. (3 Points) Show that L = {0*1n0*1n0* | n > 0}* is regular. (Note this is the Kleene closure of the language of #1)

Note that this language = {x  {0,1}* | number of 1’s in x is even}

You can either draw a finite automaton or give a regular expression:

(10*1 U 0)*
 #3. (4 Points) Use the subset construction to convert the following NFA to a DFA. Show each step clearly. Redraw the graph.

[image: image1.png]

	
	0
	1

	{14}
	{23}
	{45}

	*{23}
	{5}
	(

	{45}
	{235}
	{5}

	{5}
	{35}
	(

	*{235}
	{35}
	(

	*{35}
	{35}
	(

	(
	(
	(

[image: image2.png]

#4. (4 Points) Minimize your dfa from #4. Show the steps of your algorithm clearly. If you are not using the Partitioning algorithm be especially clear!
Step 1 Separate final and non-final states

	
	0
	1

	{14} I
	{23} II
	{45} I

	{45} I
	{235} II
	{5} I

	{5} I
	{35} II
	(

	*{235} II
	{35} II
	(

	*{23} II
	{5} I
	(

	* {35} II
	{35} II
	(

	(
	(
	(

Note that States (14} and {45} both go to Partition II on a 1 while {5} goes to Partition (. Move them to their own Partition:

	
	0
	1

	{5} I
	{35} I
	(

	{14} III
	{23} II
	{45} III

	{45} III
	{235} II
	{5} I

	*{235} II
	{35} II
	(

	*{23} II
	{5} I
	(

	* {35} II
	{35} II
	(

	(
	(
	(

It seems State {14} differs from the other state in its partition, so give it its own partition

	
	0
	1

	{5} I
	{35} I
	(

	{14} IV
	{23} II
	{45} III

	{45} III
	{235} II
	{5} I

	*{235} II
	{35} II
	(

	* {35} II
	{35} II
	(

	*{23} II
	{5} I
	(

	(
	(
	(

Clearly, State {23} is different from the other states in Partition II. Move it to its own Partition:

	
	0
	1

	{5} I
	{35} I
	(

	{14} IV
	{23} V
	{45} III

	{45} III
	{235} II
	{5} I

	*{235} II
	{35} II
	(

	* {35} II
	{35} II
	(

	*{23} V
	{5} I
	(

	(
	(
	(

No further Partitioning can be done: States {235} and {35} are the same:

[image: image3.png]1
(.
)J1

#5. (4 Points) Given a regular expression r and a string w, show that the question ”Is w L(r)” is decidable.
If r is a regular expression, it denotes a regular language, L(r), and there is thus a finite automaton M which accepts strings in L(r). We need just run w through M to see if it is accepted or not.
#6. (2 Points) Design a dfa to accept strings over {0,1}* that do not contain two consecutive 1’s.

Easy way: First create a dfa that does accept 2 consecutive 1’s:
[image: image4.png]

Now reverse final and non-final states:

[image: image5.png]

#7. (3 Points) Create the regular expression for the following by eliminating states:

[image: image6.png]k-Fogod
O ;

Eliminating 2:

[image: image7.png]

Eliminating 1:

[image: image8.png]1(01%0y*1
@ 0| 1 (01%0y*1

 Regular Expression:

[image: image9.png](0 | 1(01%0)*1) (O | 1(01*0)*1)*

#8. (4 Points) Given the following CFG:

S (a S b S | b S a S | 

a) Show a leftmost derivation of a b a b.

There is more than 1:

1: S (a S b S (a b S (a b a S b S (a b a b S (a b a b

2: S (a S b S (a b S a S b S (a b a S b S (a b a b S (a b a b
b) Show a parse tree for a b a b.

One choice:

[image: image10.png]basbs

A A

c) What is L(G)?
L(G) = {w {a,b}* | w contains an equal number of a’s and b’s}

d) Show G is ambiguous

See part a
#9. (5 Points) a) Define Chomsky Normal Form (I am having you do this for the next parts. There are 2 different definitions and I need to know which one you are using)

Definition 1: All productions are of the form:
A (B C (B, C ≠ S)
or

A (a

or

S ((if is in L(G))
Definition 2:
No  productions allowed so if  is in the original language, the CNF represents the language – .
b) (1 Point) Name the steps an algorithm would take to convert an arbitrary context free grammar to Chomsky Normal Form

0. (For definition 1) Remove recursive start
1. Remove lambda (epsilon) productions

2. Remove singleton productions

3. Remove useless symbols (first, those which don’t derive terminals and then those not reachable from S)

c) (3 Points) Convert the following grammar to Chomsky Normal Form

S (A | 1 B | 
A (0 | 
B (1 | A C
C (0 C | 0

Using definition 1.

Remove lambda productions:

S (A | 1 B | 
A (0
CC
C (0 C | 0
Remove singleton productions:

S (0 | 1 B | 
A (0

B (1 | A C | 0 | 0 C
C (0 | 0 C

Remove useless:

(i) all derive terminals

(ii) all reachable

CNF:

S (0 | X B |

A (0

B (1 | A C | 0 | A C

C (0 | A C

X (1
#10. (8 Points) For each of the following languages, determine where in the Chomsky hierarchy it belongs. State your answer and then prove it. Specifically:

· If the language is regular, prove it is regular.
· If the language is context-free, but not regular, prove that it is context-free and prove that it is not regular
· If the language is recursive, but not context-free, prove that it is context-free and prove that it is not context-free

· If the language is recursively enumerable(r.e.), but not recursive, prove that it is recursively enumerable and prove that it is not recursive.

· If the language is not recursively enumerable, prove that it is recursively enumerable.

For any answer involving Turing machines, you need only describe how the Turing Machine works.

a) L = {<M,w> | M halts on input w}

Sort of looks like the halting problem language (it is). We know this is r.e. and the proof of the halting problems shows it is not recursive.
b) L = {1i 0+1 i 0+ | i > 0}*

Regular: L = (100*100* U 00*00*)*
c) L = {w w} | w  {a,b}* }

Not regular (use pumping lemma)
Recursive: (run TM back and forth changing a’s and b’s until no match or done)
d) L = a*b*

duh! This is a regular expression
#11. (4 Points).
a) Show, using pictures if you wish, that recursive languages are closed under

i) complement

Reverse final and non-final states
ii) union
Input w to each of 3 TM’s. If either accepts, accept. If both reject, reject
b) Prove that a language L is recursive if and only if L and ~L are recursively enumerable.
(If L and ~L are r.e., they each have a TM. Putting them together produces one that both accepts and rejects
(If L is recursive, so is ~L (see last problem) and recursive languages are r.e.
#12. (4 Points) a) Describe the steps needed to show a new problem is NP-Complete.
b) What is the significance of NP-Complete for Computer Science problems?
a) (i) Show it is in NP by creating a nondetermisnistic TM to solve it. (ii) Show it is NP-hard by reducing a known NP problem to it.
b) There are problems which have no known polynomial time solution (so large numbers of inputs cannot be used), but for which no one has proven there is no polynomial time solution. And if any of them are ever shown to be solvable in polynomial time (or not), then they all will be.
