[image: image1.png]

Comp409

[image: image2.jpg]

Project, Part 1

5 Points
We will be writing a complete compiler for a language called Chiaa. Chiaa is a subset of Java which we will implement using lex and yacc (or flex and bison, your choice).

Chiaa consists of a statement block (executable statements) and only the integer data type (remember computers think everything is an integer anyway)

The project is broken into four parts. You should be sure to keep adding documentation as you go along so the entire project is well documented at the end. One or more points will be assigned for documentation for each part of the project.

For Part 1, you will generate a scanner using lex or flex which will find the tokens in our language. The tokens in Chiaa are listed below. The bolded words are the token class and the words between quotes, “” are the lexemes. For example (type, “void) and (Punctuation, “(“) are tokens:

Type

"void", "int"

Logical Operators

"!", "||", "&&", "!=", "==", "<", ">", "<=", ">="

Numerical Operators

"+", "-", "*", "/", "%"

Punctuation

"{", "}", "(", ")", ",", ";"

Names

Letter (Letter | Digit) * where a Letter is either an uppercase or lowercase letter and Digit is one of the digits from 0-9

Integers

Sequences of 1 or more digits

The following example, in a file called Lex.1, can be expanded to find all the tokens in Chiaa:

%}

%%

[0-9]+ [0-9] printf("positive integer\n");

[a-zA-Z][a-zA-Z0-9]* printf("Identifier\n");

%%

This example will find identifiers and integers in an input file. Any other sequence, say “==”, will just be echoed in the output.

Or if you would like to define names for your sequences of characters, you could start with a file named Lex.2:

%{ #include <stdio.h>

%}

DIGIT [0-9]

LETTER [a-zA-Z]

%%

{DIGIT}+ printf("positive integer\n");

{LETTER}({LETTER}|{DIGIT})* printf("identifier\n");

%%

Here a name has been give to a Letter and a Digit, and then the tokens for Integer and Identifier are described in the token section.

To generate the scanner:

Step 1 Generate the C Program which is the Scanner:

[karen@kumain karen]$ lex lex.1

[karen@kumain karen]$ ls

lex.1 lex.yy.c

We can see that lex has created a C program. This is our Scanner, but we have to compile it first:

Step 2: Compile the C Program which is the Scanner:

[karen@kumain karen]$ cc lex.yy.c -ll

[karen@kumain karen]$ ls

a.out lex.1 lex.yy.c

a.out is the executable scanner. Let’s try it out!

Step 2: Running the Scanner:
[karen@kumain karen]$./a.out

23

positive integer

r2d2

Identifier

2rdr

positive integer

Identifier

You are to expand these examples to create a scanner for Chiaa. For inputs use four examples:

Inputs:

--- Input 1 --

void input_a() {

 a = b3;

 xyz = a + b + c - p / q;

 a = xyz * (p + q);

 p = a - xyz - p;

}

---Input 2 ---

void input_b() {

 if (i > j)

 i = i + j;

 else if (i < j)

 i = 1;

}

---Input 3--

void input_c() {

 while (i < j && j < k) {

 k = k + 1;

 while (i == j)

 i = i + 2;

 }

}

------------------------------------ Input 4: An Example of your own -----------

It should test all the tokens not tested by the other examples.

Hand in (electronically):

1. Your lex source file

2. Your inputs
3. A copy of the output for each input file
4. Documentation.
What you submit should look something like:
Comp 409

Compiler Project

<Your Name>

Table of Contents

1. Introduction
2. The Scanner

2.1 The Tokens

2.2 The Lex file

2.3 Inputs

2.4 Outputs

1. Introduction

This project <describe the project in your own words. Include a description of the software you will use, the language you are compiling etc. Include any appropriate links to web information>

2. The Scanner

<Describe your Scanner>

2.1 The Tokens <This is just the list given you>

2.2 The Lex File <This is the Lex file you created>

 2.3 Inputs <These are the four input programs>

 2.4 Outputs <Your outputs. Be sure to state which input the output is for. You can combine 2.3 and 2.4 if you wish and put the output right after the input.>

Warning For the next part of the project (The Parser), you will need to change your Scanner files a bit.

