COMP 409

COMPILER PROJECT

VIDWATA BAHETY

TABLE OF CONTENTS

1. Introduction

2. The Scanner

2.1 The Tokens

2.2 The Lex file

2.3 Inputs

2.4 Outputs

1. Introduction

This project is aimed at writing a complete compiler for a language called “Chiaa”, which is a subset of Java. The project is going to be implemented using flex (we could have as well used lex, yacc or bison)

Flex is a fast lexical analyser generator. It is a tool for generating programs that perform pattern-matching on text. There are many applications for Flex, including writing compilers in conjunction with GNU Bison. Flex is a free implementation of the well known Lex program. It features a Lex compatibility mode, and also provides several new features such as exclusive start conditions.

For details on using flex man pages were referred to.
 2. The Scanner

Chiaa , is the language for which we will generate a scanner. This language consists of a statement block (executable statements) and only the integer data type .

In this part of project a small scanner using flex has been generated. The scanner is able to find the tokens in our language. The tokens in Chiaa are listed below. The bolded words are the token class and the words between quotes, “” are the lexemes.

2.1 The tokens

Type

"void", "int"

Logical Operators

"!", "||", "&&", "!=", "==", "<", ">", "<=", ">="

Numerical Operators

"+", "-", "*", "/", "%"

Punctuation

"{", "}", "(", ")", ",", ";"

Names

Letter (Letter | Digit) * where a Letter is either an uppercase or lowercase letter and Digit is one of the digits from 0-9

Integers

Sequences of 1 or more digits

2.2 The Lex File

The `flex' input file consists of three sections, separated by a line with just `%%' in it:

 definitions

 %%

 rules

 %%

 user code
 The source file or the Lex File is as follows:

%{

#include <stdio.h>

%}

DIGIT[0-9]

LETTER[a-zA-Z]

%%

void|int
printf("Type\n");

{DIGIT}+
printf("Integer \n");

{LETTER}({LETTER}|{DIGIT})*
printf("Names\n");

[+]|[-]|[*]|[/]|[%]
printf("Numerical Operator \n");

[!]|[||]|[&&]|[!][=]|[=][=]|[<]|[>]|[<][=]|[>][=]
printf("Logical Operators\n");

[{]|[}]|[(]|[)]|[,]|[;]
printf("Punctuation\n");

%%

2.3 Inputs

Input1:

void input_a(){

a=b3;

xyz=a+b+c-p/q;

a=xyz*(p+q);

p=a-xyz-p;

}

Input2

void input_b(){

if(I>j)

i=i+j;

else if (I<j)

I=1;

}

Input 3

void input_c() {

while (I<j && j<k){

k=k+1;

while(I==j)

I=I+2;

}

}

Input 4

void input4() {

a=5%2;

while(a!=0){

if (a<=b ||b>=c)

for(a=1,b=0;a<3 && b >4; a++,b--){

while(! TRUE){

printf("input 4");

}

}

}

}
2.4 Outputs

output1

Type

 Names

_Names

Punctuation

Punctuation

Punctuation

Names

=Names

Punctuation

Names

=Names

Numerical Operator

Names

Numerical Operator

Names

Numerical Operator

Names

Numerical Operator

Names

Punctuation

Names

=Names

Numerical Operator

Punctuation

Names

Numerical Operator

Names

Punctuation

Punctuation

Names

=Names

Numerical Operator

Names

Numerical Operator

Names

Punctuation

Punctuation

 Output2

Type

 Names

_Names

Punctuation

Punctuation

Punctuation

Names

Punctuation

Names

Logical Operators

Names

Punctuation

Names

=Names

Numerical Operator

Names

Punctuation

Names

 Punctuation

Names

Logical Operators

Names

Punctuation

Names

=Integer

Punctuation

Punctuation

Output3

Type

 Names

_Names

Punctuation

Punctuation

Punctuation

Names

 Punctuation

Names

Logical Operators

Names

 Logical Operators

Logical Operators

 Names

Logical Operators

Names

Punctuation

Punctuation

Names

=Names

Numerical Operator

Integer

Punctuation

Names

 Punctuation

Names

Logical Operators

Names

Punctuation

Names

=Names

Numerical Operator

Integer

Punctuation

Punctuation

Punctuation

 Output4

Type

 Names

Punctuation

Punctuation

 Punctuation

Names

=Integer

Numerical Operator

Integer

Punctuation

Names

Punctuation

Names

Logical Operators

Integer

Punctuation

Punctuation

Names

 Punctuation

Names

Logical Operators

Names

 Logical Operators

Logical Operators

Names

Logical Operators

Names

Punctuation

Names

Punctuation

Names

=Integer

Punctuation

Names

=Integer

Punctuation

Names

Logical Operators

Integer

 Logical Operators

Logical Operators

 Names

 Logical Operators

Integer

Punctuation

 Names

Numerical Operator

Numerical Operator

Punctuation

Names

Numerical Operator

Numerical Operator

Punctuation

Punctuation

Names

Punctuation

Logical Operators

 Names

Punctuation

Punctuation

Names

Punctuation

"Names

 Integer

"Punctuation

Punctuation

Punctuation

Punctuation

Punctuation

Punctuation

