Project Part 4

Abstract Syntax Trees

10 Points

Due: Tuesday, December 3

Note 1: Students have told me in the past that this assignment takes in excess of 30 hours, so start now!

Note 2: I expect that each group’s lex and yacc files will look somewhat different from other groups! All similar programs will receive 0’s (givers as well as takers). Do not endanger a friend by asking for their code.

Note 3 Please do not leave code in the common “root” directory (or any other common directory). Copy it to a floppy and delete your work each time you leave.

Note 4 If you were unable to get Project, part #2 working, there will be a solution posted on the Projects page that you can use to try and do Part #3.

An Abstract Syntax Tree is a "pared down" parse tree. Each node is an element of the language. The non-leaf nodes represent operators while the leaf nodes represent operands.

Example 1 Abstract Syntax Tree for a + b where a is opnd1 and b is opnd2.

In parenthesized form, this might be written:

(plus ("a" "b"))

or

(+ (a b))

or perhaps

(plus

 ("a" "b")

)

The production that relates to such a node is

addop_expression --> mulop_expression { addop mulop_expression }

If we create a data structure for the nodes of the abstract syntax tree:

[image: image1.png]

then we can add attributes and functions such as:

addop_expression --> mulop_expression { addop mulop_expression }

addop_expression.NodePtr = MakeNode
addop_expression.Info = "+"

addop_expression.Left = mulop_expression1.NodePtr
addop_expression.Right = mulop_expression2.NodePtr

These statements might create an ast node (pointed to by NodePtr) with “+” in the info field and pointers to addop_ and mulop_expression. You would have to write the code for make_node.

In yacc

Of course the above isn’t yacc code. You will have to declare a struc which is an ast node and code for function make_node so that when you say make_node, a node with a nodeptr is created and values entered for info, left and right.

Yacc does have some built-in variables that will make this easier: $n refers to the value of the nth symbol on the right hand side of the rule; $$ refers to the value of the non terminal symbol on the left-hand side. Typically you write $$ = f($1, $2, ...$m) next to the production where f is a function written by you.

When you write $1, and that value has been assigned via $$ in a previous production, the value is passed up the tree.
For example,

addop_expr : addop_expr ADDOP mulop_expr { $$ = make_node("+",$1,$3); }

During parsing a node will (hopefully) be created, pointers to the left and right will be entered (hopefully) into the correct fields and “$$” will contain a pointer to the current ast.

AND you will have to write a “printtree” function that will be called from your main program after yacc has parsed and created the tree, e.g.,

main()

{

 yyparse();

 printtree(…);

 return 0;

}

.....
You will want to read the yacc references to learn more about this. I also strongly recommend you look at Section 6.3.6: Adding AST Routines to Recursive
Descent Parsing (it’s in the Semantic Analysis notes in Class 11). Here are some references:

http://www.unet.univie.ac.at/aix/aixprggd/genprogc/ie_prog_4lex_yacc.htm#A26F0736

http://dinosaur.compilertools.net/yacc/index.html
http://epaperpress.com/lexandyacc/ (has an example that creates an ast. Click on calculator on the left)

http://cs.gmu.edu/~white/CS540/Examples/
More ast examples:

Example 2 Abstract Syntax Tree for If (a < b) m = 2;

[image: image2.png]

This might be printed out:

(IF ("<" ("a" "b")) (= ("m" "2")))

or perhaps

(IF

 (

 "<" ("a" "b")

 = ("m" "2")

)

)

Example 3 Abstract Syntax Tree for WHILE (a < b) m = 2 ;

[image: image3.png]

This might be printed out:

(WHILE ("<" ("a" "b")) (= ("m" "2")))

or

(WHILE (

 "<" ("a" "b")

 = ("m" "2")

)

)

(Lots of variations on the output notation are possible, of course; just make sure it's clear.)

Consider the following program:

void input_a() {

 a = b3;

 xyz = a + b + c - p / q;

 a = xyz * (p + q);

 p = a - xyz - p;

}
Its ast might be printed out:

Unit [

 Line(1)

 (void (input_a)

 Line(2)

 (=

 (a b3))

 Line(3)

 (=

 (xyz

 (+

 (a

 (+

 (b

 (-

 (c

 (/

 (p q))))))))))

 Line(4)

 (=

 (a

 (*

 (xyz

 (+

 (p q))))))

 Line(5)

 (=

 (p

 (-

 ((-

 (a xyz))

 p))))

 Line(6)

 EndVoid)]

The output need not look exactly like that above, but you should print out line numbers (if you can) and somehow show the ast structure. Do the line numbers after everything else is working.

Run your program on the usual four inputs (including one of your own)

.
I will check out your programs up in the lab. All group members will be quizzed and graded separately. You will show me:

· your lex and yacc source files

· the output AST's

· the process

I will ask each group member some easy questions to be sure everyone in the group understands the project.

Email me: your updated documentation which includes the grammar, inputs, lex and yacc programs, and the output ast’s. By now, your documentation should be getting quite long. Include the names of any sources (people, the web etc.) that you consulted in the process of doing this assignment.

.

