Project Part 2

Parser

Implementing the Chiaa Grammar using yacc

5 Points

Due: Wednesday, Oct. 29

Consider the following grammar for Chiaa:

where

[] = 0 or 1 (regular expression: ?)

{ } = 0 or more (regular expression: *)

< > = 1 or more (regular expression: +)
program -> method_declaration

method_declaration -> type name "(" ")" "{" statement_block "}"

type -> "void" | variable_type

variable_type -> "int"

statement_block -> { statement }

statement -> simple_statement ";" | compound_statement | "{" statement_block "}"

simple_statement -> declarative_statement | assignment_statement

declarativestatement -> variable_type assignmentstatement

 {"," assignmentstatement}

assignment_statement -> name [assignop expression]

expression -> or_expression

or_expression -> and_expression { or and_expression }

and_expression -> relop_expression { and relop_expression }

relop_expression -> ltgt_expression { relop ltgt_expression }

ltgt_expression -> addop_expression { ltgt addop_expression }

addop_expression -> mulop_expression { addop mulop_expression }

mulop_expression -> term { mulop term }

term -> not value | addop value | value

value -> name | number | "(" expression ")"

assignop -> "="

not -> "!"

or -> "||"

and -> "&&"

relop -> "!=" | "=="

ltgt -> ">" | "<" | ">=" | "<="

addop -> "+" | "-"

mulop -> "*" | "/" | "%"

compound_statement -> if_statement | loop_statement

if_statement -> "if" "(" expression ")" statement ["else" statement]

loop_statement -> while_statement | dowhile_statement | for_statement

while_statement -> "while" "(" expression ")" statement

do_whilestatement -> "do" statement "while" "(" expression ")" ";"

forstatement -> "for" "(" [for_expression] ";" [expression] ";"

 [for_expression] ")" statement

for_expression -> declarative_statement | assignment_statement

 { "," assignment_statement }

name -> letter { letter | digit | "_" }

number -> digit { digit }

letter -> [a-zA-Z]

digit -> [0-9]

Note that some of the productions really describe tokens for the lex part. Change your lex file to work with the yacc file.You will also be changing your Part 1 file to return the token to the parser.

Here are lex and yacc files for a small calculator example that work together:

The lex file:

%{

#include "y.tab.h"

%}

%%

"+" {return(PLUS);}

"*" {return(TIMES);}

"(" {return(LPAREN);}

")" {return(RPAREN);}

[\n] {return(CR);}

[0-9]+ {return(INT);}

[\t] ;

%%

The yacc file:

%token PLUS TIMES INT CR RPAREN LPAREN

%%

lines : lines line

 | line

;

line : expr CR

;

expr : expr PLUS term

 | term

;

term : term TIMES factor

 | factor

;

factor : LPAREN expr RPAREN

 | INT

;

%%

main()

{

 return(yyparse());

}
yyerror(s)

 char *s;

{

 fprintf("%s\n",s);

}

yywrap()

{

 return(1);

}

(Add your own message to the fprintf in main if you wish)
Running lex and yacc:

As before, if the lex file is in a file named lex2.l, then we just type in

lex lex2.l

And, as before lex creates the file lex.yy.c.

Now we want yacc to create the parser from our file (see above) which we’ll call ly.y. Type:

yacc –d ly.y

This creates a file called yacc.tab.c and the “-d” creates a file of definitions called y.tab.h. which when compiled produce our parser. Stop and look at these files. To compile:

cc y.tab.c lex.yy.c

which, as usual, creates the file a.out.

Running a.out
../a.out
2 + 3 * 4
(2 + 3) * 4
^C (exits)

../a.out
3 2 + +
syntax error
^C (exits)

Note: When correct input is entered, the only way we know it is because we get no error, so let’s add some print statements to the yacc file (you can add them to the lex file too, but it gets messy) so we can “trace” the parse:

%token PLUS TIMES INT CR RPAREN LPAREN

%%

lines : lines line

| line {printf("line\n");}

;

line : expr CR

;

expr : expr PLUS term {printf("expression\n");}

| term {printf("expression\n");}

;

term : term TIMES factor {printf("term\n");}

| factor {printf("term\n");}

;

factor : LPAREN expr RPAREN {printf("factor\n");}

| INT {printf("factor\n");}

;

%%

main()

{

 return(yyparse());

}
yyerror(s)

 char *s;

{

 fprintf("%s\n",s);

}

yywrap()

{

 return(1);

}
Now after we run this through yacc and compile, we get:

$./a.out

2 + 3 * 4

factor

term

expression

factor

term

factor

term

expression

line

Yacc produces a bottom-up parser. The parse should be the reverse of a rightmost derivation. Is the out put correct? (It might have helped if we had added printf statements to the terminals in the lex file).

(a) Write yacc code to create a parser for this subset of Chiaa. Add print statements after each production to print out the name of the nonterminal on the left-hand-side of the production. (For the next assignment, you will be creating a tree internally. Do not do it for this assignment!)

(b) Run it on the assigned programs from the lexer assignment and a new program of your choice. This new program should test out your parser in ways not tested by the first three programs. Creating good test cases is an important part of writing a compiler. One point will be for this test case.

c) Turn in: one file containing the same sections as before plus sections for the parser (including documentation). Many of you did not create a Table of Contents before, so please do that for this assignment. Also, be careful when inserting the lex and yacc files that I can cut and paste to run them (WordPad puts garbage in the files. Check them before you submit to me electronically). Be sure to include a reference to the source if you use words from some reference.

Do check your output to see if it looks like it is parsing correctly.

