
 

 

Design Rationale for Software Maintenance 
(Doctoral Symposium – Abstract) 

 
 

Janet E. Burge 
Artificial Intelligence in Design Research Group 

Department of Computer Science 
Worcester Polytechnic Institute 

100 Institute Road 
Worcester, MA 01609 USA 

508-831-5006 
jburge@cs.wpi.edu 

 

1. The Problem 

For a number of years, members of the Artificial 
Intelligence (AI) in Design community have studied 
Design Rationale (DR), the reasons behind decisions 
made while designing. Standard design documentation 
consists of a description of the final design itself: 
effectively a “snapshot” of the final decisions. Design 
rationale offers more: not only the decisions, but also 
the reasons behind each decision, including its 
justification, other alternatives considered, and 
argumentation leading to the decision [1]. This 
additional information offers a richer view of both the 
product and the decision-making process by providing 
the designer’s intent behind the decision. DR is 
invaluable as an aid for revising, maintaining, 
documenting, evaluating, and learning the design. 

Being able to keep track of what decisions were 
made, and why, is an important benefit of having 
rationale and would be especially valuable for software 
maintenance. One reason for this is that the software 
lifecycle is a long one. Large projects may take years to 
complete and spend even more time out in the field 
being used (and maintained). Maintenance costs can be 
more than 40 percent of the cost of developing the 
software in the first place [2]. The panic over the “Y2K 
bug” highlighted the fact that software systems often 
live on much longer than the original developers 
intended. Also, the combination of a long life-cycle and 
the typically high personnel turnover in the software 
industry increases the probability that the original 
designer is unlikely to be available for consultation 
when problems arise.  

If rationale has such potential value, then why is it 
not in widespread use? One difficulty, despite a good 
deal of research, is the capture of design rationale. 
Recording all decisions made, as well as those rejected, 
can be time consuming and expensive. The more 

intrusive the capture process, the more designer 
resistance will be encountered.  

Documenting the decisions can impede the design 
process if decision recording is viewed as a separate 
process from constructing the artifact [3]. Designers are 
reluctant to take the time to document the decisions they 
did not take, or took and then rejected [4]. A real danger 
is the risk that the overhead of capturing the rationale 
may impact the project schedule enough to make the 
difference between a project that meets its deadlines and 
is completed versus one where the failure to meet 
deadlines results in cancellation [5]. 

The key to making the capture worthwhile, as well 
as providing requirements for DR representation, is the 
use for, and usefulness of, the rationale. There are a 
number of potential uses for DR. These include:  
• Design verification – using rationale to verify that 

the design meets the requirements and the 
designer’s intent.   

• Design evaluation – using rationale to evaluate 
(partial) designs and design choices relative to one 
another to detect inconsistencies.   

• Design maintenance – using rationale to locate 
sources of design problems, to indicate where 
changes need to be made in order to modify the 
design, and to ensure that rejected options are not 
inadvertently re-implemented. 

• Design reuse – using rationale to determine which 
portions of the design can be reused and, in some 
cases, suggest where and how it should be modified 
to meet a new set of requirements.  

• Design teaching – using rationale to teach new 
personnel about the design.   

• Design communication – using rationale to 
communicate the reasons for decisions to other 
members of the design team. 

• Design assistance – using rationale to clarify 
discussion, check impact of design modifications, 
perform consistency checking and assist in conflict 



 

 

mitigation by looking for constraint violations 
between multiple designers. 

• Design documentation – using rationale to 
document the design by offering a picture of the 
history of the design and reasons for the design 
choices as well as a view of the final product. 

Because use is the key behind the value of the 
rationale, the focus of this work is on how rationale can 
be used to assist in software maintenance.   

2. Relevant Research 

How the DR can be used depends on its 
representation format and content [1]. Design Rationale 
representations vary from informal representations such 
as audio or video tapes, or transcripts, to formal 
representations such as rules embedded in an expert 
system [4].  A compromise is to store information in a 
semi-formal representation that provides some 
computation power but is still understandable by the 
human providing  or using the information.   

Semi-formal representations are often used to 
represent argumentation. Argumentation notations 
provide a structure to indicate what decisions were 
made (or not made) and the reasons for and against 
them. Some examples are Questions, Options, and 
Criteria (QOC) [6], Issue Based Information Systems 
(IBIS) [4], and DRL (Decision Representation 
Language) [7].    

There are also many different ways to capture DR.  
One approach is to build the rationale capture into a 
system used for the design task. One example is RCF 
(Rationale Construction Framework) [8], which 
integrates DR capture into an existing design tool.   

DR has a variety of uses.  Systems such as JANUS 
[3], critique the design and provide the designers with 
rationale to support the criticism.  Others, such as 
SYBIL [7], verify the design by checking that the 
rationale behind the decisions is complete. C-Re-CS [9] 
performs consistency checking on requirements and 
recommends a resolution strategy for detected 
exceptions. 

There has also been work on using design rationale 
in software design. DRIM (Design Recommendation 
and Intent Model) was used in a system to augment 
design patterns with design rationale [10]. Co-MoKit 
[11] uses a software process model to obtain design 
decisions and causal dependencies between them. 
WinWin [12] aims at coordinating decision-making 
activities made by various “stakeholders” in the 
software development process. Bose [13] defined an 
ontology for the decision rationale needed to maintain 
the decision structure. The goal was to model the 
decision rationale in order to support decision 

maintenance by allowing the system to determine the 
impact of a change and propagate modification effects. 

Less work has been done to study the usefulness of 
DR.  Field trials were done using itIBIS and gIBIS for 
software development at NCR [4].  Capturing rationale 
was found to be useful during both requirements 
analysis and design.  In particular, several errors were 
found during design that would not have been 
uncovered until much later when the code was written.  
IBIS also helped with team communication by making 
meetings more productive.  A study was also performed 
using DR documents to evaluate a design [14].  In this 
study, 50% of the designers’ questions were about the 
rationale behind the design and 41% of these questions 
were answered using the recorded rationale.  

3. The Approach 

There are several different types of changes that may 
be made during maintenance. These include correcting 
implementation errors (“bug fixing”), correcting design 
flaws, and enhancing the system. Design rationale has a 
number of potential uses for documentation, evaluation, 
and assistance during all types of software maintenance 

Design rationale could be generated at any stage of 
the design process and describe many different types of 
decisions: 
• Requirements – rationale could exist for the 

existing requirements and for requirements that 
were considered but then rejected. There will be 
rationale for the user interface design if the design 
was performed during the requirements phase. 

• Analysis – rationale could be associated with use-
cases and with the partitioning of the problem into 
analysis classes and collaboration diagrams. 

• Design – rationale could be associated with any 
portion of any design artifact. This could include 
reasons behind the choice of the design classes, the 
attributes (including reasons for data types and 
visibility), the methods, etc.  

• Implementation – rationale could describe the 
choice of algorithms, data structures, persistent 
storage, and more. 

• Maintenance – rationale could describe both why 
the modifications were necessary and the reasons 
behind the design and implementation choices 
necessary for the modification. 

Figure 1 shows the development phases and the 
rationale that could be generated during each of them. 
Capturing all this information would present a 
significant amount of overhead to the software 
developer. We will initially assume that all the 
necessary rationale is available. 



 

 

PROGRAM RATIONALE

Requirements:
-what it must do (F)
-constraints on how

-NFRs, scheduling, re-use
-User Interface

Analysis:
-Use Cases
- Collaboration Diagrams

Design:
-Class Diagrams (S)
-Sequence Diagrams (B)

-for each use-case (F)

Implementation:
-Code

what decisions are made that are not
captured in the design?

error handling
persistent storage
logic/control/branching
algorithms
…

“why” for requirements
application specific
domain specific
customer specific

alternative or rejected requirements
and reasons

why these use-cases
alternative or rejected use-cases
and reasons

why these classes
why these interactions

why these classes
why these attributes
why these methods

why these relationships

why these types

why these types
why this visibility

why these parameters
why these returns

why this order
why these messages
why these collaborators

why handle errors this way
why this type of storage
why these control structures
why this algorithm
…

 
Figure 1: Software Development Phases and 

Rationale 
 
To drive and evaluate this research, we will develop 

a system that supports the maintainer. This system will 
present the relevant DR when required and allow entry 
of new rationale for the modifications. 

The new DR will then be verified against the 
existing DR to check for inconsistencies. There are 
several types of checks that should be made: structural 
checks to ensure that the rationale is complete, 
evaluation, to ensure that it is based on well-founded 
arguments, and comparison to rationale collected 
previously for similar changes to see if the same 
reasoning was used.  In the latter check, the previous 
rationale could be used as a guide in determining the 
rationale for the new change. The system will also 
propagate any necessary changes to the existing DR as 
well as alerting the maintainer if the code modifications 
are the same as those made earlier and then rejected. 

Our research, and development of this system, will 
require examining the following questions: 
• How can rationale be used to assist the 

maintainer? We hope to use rationale for retrieval, 
evaluation, traceability to requirements, impact 
assessment, and as a bridge to other affected 
portions of the design. 

• How can decisions be represented with enough 
specificity to be useful yet still general enough to 
allow for inferencing? We plan to develop a 

hierarchy of reasons for modification that can be 
used at different levels of abstraction to allow 
comparisons during inferencing. 

• Does rationale differ for different types of software 
modifications?  We believe that rationale will be 
used and created at different levels of the design 
process depending on the type of modification.  

• Does maintenance rationale differ from original 
rationale? We expect maintenance rationale to be 
similar in structure, with reasons for change that are 
unique to modification. 

• Are there portions of the design or phases of the 
design process (Figure 1) where rationale capture 
would be more useful than others? We expect this 
to be true. Rationale at early phases is important 
because the decisions affect more of the resulting 
implementation. These decisions, however, are less 
likely to be altered than those later in the process. 

• What is the relationship between rationale 
collected at different phases? Is it only via the 
design artifacts? We have yet to see a direct 
relationship between rationale at different phases 
except by using common arguments for and against 
decisions. 

4. Current Status 

Inferencing Over Rationale 

Some preliminary work has been done in 
determining ways to inference over the rationale. This 
resulted in a prototype system, InfoRat [15]. InfoRat 
supported validation of the rationale and evaluation of 
the design. Validating the rationale involves verifying 
that the rationale is structurally complete and that there 
are no discrepancies, such as decisions made that had no 
arguments in their favor. Validation is important 
because explicitly justified decisions may indicate that 
decisions were well thought out.  

InfoRat used rationale to evaluate the design by 
checking to see if the decisions made were well 
supported. For example, if a decision has more, or 
stronger, arguments against it than for it then it may not 
be the best choice. Also, there may be alternatives that 
have more support than the ones that were chosen – this 
may indicate that there is either missing rationale or that 
the choice made should be reconsidered.  

InfoRat demonstrated that intelligent reasoning over 
DR can provide more beneficial use for the collected 
DR than just its retrieval and presentation.  Such 
reasoning can provide strategic guidance for the design 
process as well as a novel way of checking for design 
quality, as designs with poor rationale are less likely to 
be of high quality.   



 

 

Rationale for Software Maintenance 

A study was recently conducted to investigate 
rationale for different phases of software development 
and how it is used and modified during software 
maintenance. Three types of modifications were 
examined: correcting implementation errors (bugs), 
correcting design flaws, and adding enhancements. The 
system being modified was designed using a simplified 
version of the Unified Process [16]. The design artifacts 
consist of requirements, an initial user interface design, 
use-cases, collaboration diagrams, class diagrams, event 
trace diagrams, and source code. Modifications of each 
type were made and the structure, content, and use of 
the rationale were studied. This exercise resulted in a 
better understanding of what DR was for software and 
provided a research agenda for future work. 

5. Expected Results 

In the course of this research, and based on the study 
described earlier, we plan to produce the following: 
• A categorization of different ways to use DR during 

maintenance and what has to be done with the DR 
to support these uses. 

• A method for propagating changes made during 
maintenance through the rationale to ensure that it 
is kept current and to capture how the rationale 
evolves over time. 

• A representation for rationale occurring at multiple 
levels in the development process from 
requirements through maintenance. 

• A design rationale ontology that supports 
inferencing by indicating the relationships between 
arguments at different levels of abstraction. 

• A way of attaching the rationale to the development 
artifacts (diagrams and code) so that it can be 
presented to and modified by the user. 

• A prototype system that uses these methods to 
support the maintainer. 

Acknowledgements 

I would like to thank my advisor, David C. Brown, 
for his invaluable help and encouragement. 

References 

[1] J. Lee, “Design Rationale Systems: Understanding the 
Issues”, IEEE Expert, Vol. 12, No. 3,  1997, pp. 78-85. 

[2] F.P. Brooks Jr., The Mythical Man-Month, Addison 
Wesley, MA, 1995 

[3] G. Fischer, A. Lemke, R. McCall, and A. Morch,  “Making 
Argumentation Serve Design”, in Design Rationale Concepts, 
Techniques, and Use, T. Moran and J. Carroll, (eds), 
Lawrence Erlbaum Associates, NJ, 1995, pp. 267-294.  

 [4] J. Conklin and K. Burgess-Yakemovic, “A Process-
Oriented Approach to Design Rationale”, in Design Rationale 
Concepts, Techniques, and Use, T. Moran and J. Carroll, 
(eds), Lawrence Erlbaum Associates, NJ, 1995, pp. 293-428. 

 [5] J. Grudin, “Evaluating Opportunities for Design Capture”, 
in Design Rationale Concepts, Techniques, and Use, T. Moran 
and J. Carroll (eds), Lawrence Erlbaum Associates, NJ, 1995, 
pp. 453-470. 

 [6] A. MacLean, R.M. Young, V. Bellotti and T.P. Moran, 
“Questions, Options and Criteria: Elements of Design Space 
Analysis”, in Design Rationale Concepts, Techniques, and 
Use, T. Moran and J. Carroll (eds), Lawrence Erlbaum 
Associates, NJ, 1995, pp. 201-251. 

[7] J. Lee, “SIBYL: A qualitative design management 
system.”, in Artificial Intelligence at MIT: Expanding 
Frontiers, P.H. Winston and S. Shellard (eds), MIT Press, 
MA, 1990, pp. 104-133. 

[8] K. Myers, N. Zumel, and P. Garcia, “Automated Capture 
of Rationale for the Detailed Design Process”, Proc. of the 
11th National Conf. on Innovative Applications of Artificial 
Intelligence, AAAI Press, CA, 1999, pp. 876-883. 

[9] M. Klein, “An Exception Handling Approach to 
Enhancing Consistency, Completeness and Correctness in 
Collaborative Requirements Capture”, Concurrent 
Engineering Research and Applications, Technomic 
Publishing Company, PA, 1997, pp. 73-80. 

 [10] F. Peña-Mora, and S. Vadhavkar, “Augmenting design 
patterns with design rationale”, Artificial Intelligence for 
Engineering Design, Analysis and Manufacturing, 11, 
Cambridge University Press, UK, 1996, pp. 93-108. 

 [11] B. Dellen, K. Kohler, and F. Maurer, “Integrating 
Software Process Models and Design Rationales”, Proc. of the 
Conf on Knowledge-based Software Engineering, IEEE 
Computer Society Press, 1996, pp. 84-93. 

[12] B. Boehm, and P. Bose, "A Collaborative Spiral Software 
Process Model Based on Theory W", 3rd International Conf. 
on  the Software Process, IEEE Computer Society Press, CA, 
1994, pp. 59-68. 

[13] P. Bose, “A Model for Decision Maintenance in the 
WinWin Collaboration Framework”, Proc. of the Conf. on 
Knowledge-based Software Engineering, IEEE Computer 
Society Press, CA, 1995, pp. 105-113. 

[14] L. Karsenty, “An Empirical Evaluation of Design 
Rationale Documents”, Proc. of the Conf. on Human Factors 
in Computing Systems, ACM Press, NY, 1996, pp. 150-156. 

[15] J. Burge, and D.C. Brown, “Inferencing Over Design 
Rationale”, Artificial Intelligence in Design ‘00, J. Gero (ed.), 
Kluwer Academic Publishers, Netherlands, 2000, pp. 611-629. 

[16] I. Jacobson, G. Booch, J. Rumbaugh, The Unified 
Software Development Process, Addison-Wesley,  MA, 1999. 


	Artificial Intelligence in Design Research Group
	The Problem
	Relevant Research
	The Approach
	Current Status
	
	
	
	
	
	Inferencing Over Rationale
	Rationale for Software Maintenance






	Expected Results
	
	
	
	Acknowledgements
	References





