Lecture 7: Assembly Constants and

L anguage Programs Expressions (cont.)
» Basic e ements of assembly e constant expression —
language
» Assembler directives
+ Datadllocation directives « symbolic constant —

Data movement instructions
» Assembling, linking, and

debugging « Character or string constants —
* Using TASM
Constants and Statements
Expressions

[name][mnemonic][operands][;comment]

¢ Freeform— any column, any
number of spaces, can use blank
lines

* Numeric literd:

* Integer constants end with a
radix symbol — h (hex), qor o * Two types of statements:

. . — Instruction — statements executed by the
(octdl), d (decimal), b (binary). rocessor t e Y

— Directives — statements that give
instructions to the assembler.

Names

 Four types of names.
— Variable:

— Labd:
— Symboal:
— Keyword:
» Case-insengitive
» Can't start with digits (and should

avoid garting with @)
» Can't match areserved word

Program Structure Using
Directives

title <your title here>
. nodel smal |
.stack 100h
.data
<your data here>
. code
mai n proc
nov ax, @lata
nov ds, ax
<your code here>
mai n endp
end main

Assembly Directives

* .code —marks start of code segment
* .data—marks start of data segment

.Stack — set the size of the stack
segment

» .model — specify memory mode (we
will use .model small — 64K for
memory, 64K for data)

title —title of listing file
* proc— begin procedure

» endp —end of procedure
end —end of program

* page — set page format

Alternative Structure

title <your title here>
. nodel snal
.stack 100h
.data
<your data here>
. code
.startup
<your code here>
.exit
end

Startup and .exit are dways used
inapair. .gartup sets up the data
segment so you don't need to do
it!

Data Allocation
Directives

» Dataalocation directives
allocate storage based on
several predefined types:

— DB —define byte (1 byte)
—DW —define word (2 bytes)
—DD - define doubleword (4 bytes)

— ... and more for larger data types
(up to 10 bytes)

DB Example

.data
aLi st db “ABCD

offset contents
0000 ‘A
0001 ‘B’
0002 ‘C
0003 ‘D’

Define Byte (DB)

* Example:
charl db ‘A’ ;ASCII character
char2 db*A’ —10; expression
signedl db 128 ;smallest signed va
signed2 db +127 ;largest signed va
unsigl db 255 ;largest unsigned val

Multiple initializers
listdb 1,2,3,4

o Strings.
myString db “Hello World”,0

Can duplicate values using DUP:
db 2 dup(*ABC") ; 6 bytes“ABCABC”

Define Word (DW)

* Example:
dw 0, 65535 ;smallest/largest unsigned vas
dw —32768, 32767 ;smallest/largest signed
dw 256 * 2 ;calc expression (512)
dw 1000h, 4094, ‘AB’ ; multiple initidizers
dw ? ;uninitialized
dw 5 dup(1000h) ; 5 words, each 1000h
dw 5dup(?) ;5 words, uninitialized
 Pointer —the offset of avariable or
subroutine can be stored in another
variable (a pointer):
list dw 23, 45, 22, 34
ptr dw list

* Reversed storage format

DW Example

* code:
.data

msg dw 'SC,'02','11',"'L *,
"ba',"1"

* datain memory:

-d 131d:0

131D: 0000 43 53 32 30 31 31
20 4G-61 62 20 31 2B D3 E8 DB
CS2011 Lab 1+...

MQV Instruction

* MOV destination, source
» Basicforms:
—MOV reg, reg
—MQV mem, reg
—MOQV reg, mem
—MOV mem, immed
—MOV reg, immed
» Notice: no move from memory
to memory!

Define Doubleword
(DD)

* Examples.
signed_va dd 0, 0BCDA1234h, 2147483648
block dd 100h dup(?) ; 256 doublewords (1024
bytes)

e Bytesin a doubleword are stored in
reverse order —least significant
digits at the lowest offset.

12345678h:
Offset: 00 01 02 03
Vdue 78 56 34 12
 Doublewords can hold the 32-bit
segment-offset address of avariable
or procedure;
poi nter dd subroutinel

MOV Examples

.data

count db 10

total dw 4126h
bigval dd 12345678h

.code
mov a, b ;8-bit register to register
mov bl, count ; 8-bit memory to register
mov count,26 ; 8bitimmediate to memory
mov bl, 1 ;8-bit immediate to register
mov dx, cx ; 16-bit register to register
mov bx, 8FE2h ;16-bit immediate to register
mov total, 1000h ;16-bit immediate to memory
mov eax, ebx ; 32-hit register to register
mov edx, bigvVa ;32-bit memory to register

Type Checking

» Assembler uses the size you give the
variable:

.data

count dw 20h

. code

nov al, count ; error

¢ The LABEL attribute:

XCHG

» XCHG exchanges the contents
of two registers or aregister and
avariable:

XCHG reg, reg
XCHG reg, mem
XCHG mem, reg

.data

countb | abel byte ; byte attribute

countw dw 20h ; word attribute

. code

mov al, countB ; get low byte

nmov cx, countW ; get whole thing
Operands with

Displacements

* You can add a displacement to the
name of avariable using direct-
offset addressing.

* Example:

arrayB db 10h, 20h
arrayW dw 100h, 200h

nov al, arrayB ;AL = 10h
nov al, arrayB+1 ;AL = 20h
nmov ax, arrayw ; AX = 100h
nmov ax, arrayWw2 ;AX = 200h

nov ax, arrayWwl ;AX =7

XCHG Example

* adding two variables from p. 73
of Irvine.

Assembling, Linking,
and Debugging

* Multi-step process:

—Use atext editor to create a
source file.

—Use the assembler program to
read the source file and create an
object file

—Usethelinker to link the object
file with any needed routines
from the link library and create an
executable program.

— Use the operating system to run
the executable.

Assembling using
TASM

Without errors:;

D:\Janet\ Teaching\CS2011\Labs>tasm/z/zi labl.aam

Turbo Assembler Version 4.1 Copyright (c) 1988, 1996
Borland International

Assembling file: labl.aan
Error messages: None
Warning messages. None
Passes: 1
Remaining memory: 418k

« Z option — source lines with errors should be
displayed.

« Zi option — include information needed by the
debugger in the output file.

Assemble-Link-Execute

Cycle

* figure 1 from p. 60 of Irvine
e Table 2 from p. 61 of Irvine

Assembling using
TASM, cont.

With errors:

D:\Janet\ Teaching\CS2011\L abs>tasm/z/zi 1abl.eam

Turbo Assembler Version 4.1 Copyright (c) 1988, 1996
Borland International

Assembling file: labl.aam
mov AX, [msf]
Error |abl.asm(11) Undefined symbol: MST
Error messages: 1
Warning messages. None
Passes: 1
Remaining memory: 418k

Linking using TASM

D: \ Janet\ Teachi ng\ CS2011\ Labs>t | i nk/ v | abl

Turbo Link Version 7.1.30.1. Copyright
(c) 1987, 1996 Borland International

* /v option indicates that debug
options should be included.
 Other options:

—/3 —adlow 32 bit registers (we
won't be using this)
—/m —generate amap file

Tracing Programs

» Some useful windows for
looking at program information:
— Stack Window (View/Stack) —
lists dl active procedures with
most recent called listed first.
Thistells you how you got to
whereyou are.
— Execution History Window —this
keeps arecord of the last 400-
3000 instructions executed!

Debugging using TASM

 Use debugging options when
assembling and linking
» Debugging information is stored
in the .obj and .exefiles,
making them dightly larger.
» Starting the turbo debugger:
—td labl

Tracing Programs, cont.

« Stepping through your program:

— run (F9) — runs through the program to
the end, a breakpoint, or until ctrl-break
is pressed

— go to cursor (F4) — runs and stops
before thelinethe cursor ison is
executed

— trace into (F7) — a single-step through
the program that steps into subroutines

— step over (F8) —asinglestep through
the program that skips over procedure
calls (executing the procedure). This
fully executes LOOP and INT
instructions

— seep. 616 of Irvine for more!

Breakpoints

 Breakpoints are very useful!

* A breskpoint isamarker that
tells the debugger to pausein
one of the following ways:

—unconditionally on a particular
Statement

—when a preset condition becomes
true (say on the 3@ time through a
loop)

—when amemory location changes
* seelrvinep. 617 for things you
can do with breakpoints.

Examining and
Modifying Data

» There are many ways to examine
and modify data using the debugger:

— examining registers (View/Registers)

— examine and modify variables
(View/Variables)

— watch windows (View/Watches) allow
you to watch variables change as the
program runs

— view memory (View/Dump) —getting a
hex memory dump (likewe did in
debug)

» Besureto read Appendix D on how
to use the Turbo Debugger!

