
1

Lecture 7: Assembly
Language Programs

• Basic elements of assembly
language

• Assembler directives
• Data allocation directives
• Data movement instructions
• Assembling, linking, and

debugging
• Using TASM

Constants and
Expressions

• Numeric literal:

• Integer constants end with a
radix symbol – h (hex), q or o
(octal), d (decimal), b (binary).

Constants and
Expressions (cont.)

• constant expression –

• symbolic constant –

• Character or string constants –

Statements
[name][mnemonic][operands][;comment]

• Free-form – any column, any
number of spaces, can use blank
lines

• Two types of statements:
– Instruction – statements executed by the

processor at run-time.

– Directives – statements that give
instructions to the assembler.

2

Names

• Four types of names:
– Variable:

– Label:

– Symbol:

– Keyword:

• Case-insensitive
• Can’t start with digits (and should

avoid starting with @)
• Can’t match a reserved word

Assembly Directives

• .code – marks start of code segment
• .data – marks start of data segment
• .stack – set the size of the stack

segment
• .model – specify memory model (we

will use .model small – 64K for
memory, 64K for data)

• title – title of listing file
• proc – begin procedure
• endp – end of procedure
• end – end of program
• page – set page format

Program Structure Using
Directives

title <your title here>
.model small
.stack 100h
.data
<your data here>
.code
main proc

mov ax, @data
mov ds,ax
<your code here>

main endp
end main

Alternative Structure

title <your title here>
.model small
.stack 100h
.data
<your data here>
.code
.startup

<your code here>
.exit
end

.startup and .exit are always used
in a pair. .startup sets up the data
segment so you don’t need to do
it!

3

Data Allocation
Directives

• Data allocation directives
allocate storage based on
several predefined types:
– DB – define byte (1 byte)
– DW – define word (2 bytes)
– DD – define doubleword (4 bytes)
– … and more for larger data types

(up to 10 bytes)

Define Byte (DB)

• Example:
char1 db ‘A’ ;ASCII character
char2 db ‘A’ – 10 ; expression
signed1 db –128 ;smallest signed val
signed2 db +127 ;largest signed val
unsig1 db 255 ;largest unsigned val

• Multiple initializers:
list db 1, 2, 3, 4

• Strings:
myString db “Hello World”,0

• Can duplicate values using DUP:
db 2 dup(“ABC”) ; 6 bytes “ABCABC”

DB Example

.data
aList db “ABCD”

offset contents
0000 ‘A’
0001 ‘B’
0002 ‘C’
0003 ‘D’

Define Word (DW)
• Example:

dw 0, 65535 ;smallest/largest unsigned vals
dw –32768, 32767 ;smallest/largest signed
dw 256 * 2 ;calc expression (512)
dw 1000h, 4094, ‘AB’ ; multiple initializers
dw ? ;uninitialized
dw 5 dup(1000h) ; 5 words, each 1000h
dw 5 dup(?) ;5 words, uninitialized

• Pointer – the offset of a variable or
subroutine can be stored in another
variable (a pointer):
list dw 23, 45, 22, 34
ptr dw list

• Reversed storage format

4

DW Example

• code:
.data

msg dw 'SC','02','11','L ',
'ba','1 '

• data in memory:

-d 131d:0

131D:0000 43 53 32 30 31 31
20 4C-61 62 20 31 2B D3 E8 DB
CS2011 Lab 1+...

Define Doubleword
(DD)

• Examples:
signed_val dd 0, 0BCDA1234h, -2147483648
block dd 100h dup(?) ; 256 doublewords (1024

bytes)

• Bytes in a doubleword are stored in
reverse order – least significant
digits at the lowest offset.
12345678h:
Offset: 00 01 02 03
Value: 78 56 34 12

• Doublewords can hold the 32-bit
segment-offset address of a variable
or procedure:
pointer dd subroutine1

MOV Instruction

• MOV destination, source
• Basic forms:

– MOV reg, reg
– MOV mem, reg
– MOV reg, mem
– MOV mem, immed
– MOV reg, immed

• Notice: no move from memory
to memory!

MOV Examples

.data
count db 10
total dw 4126h
bigVal dd 12345678h

.code
mov al, bl ;8-bit register to register
mov bl, count ; 8-bit memory to register
mov count,26 ; 8-bit immediate to memory
mov bl, 1 ;8-bit immediate to register
mov dx, cx ; 16-bit register to register
mov bx, 8FE2h ;16-bit immediate to register
mov total, 1000h ;16-bit immediate to memory
mov eax, ebx ; 32-bit register to register
mov edx, bigVal ;32-bit memory to register

5

Type Checking

• Assembler uses the size you give the
variable:
.data
count dw 20h
.code
mov al, count ; error

• The LABEL attribute:

.data
countb label byte ; byte attribute
countw dw 20h ; word attribute
.code
mov al, countB ; get low byte
mov cx, countW ; get whole thing

Operands with
Displacements

• You can add a displacement to the
name of a variable using direct-
offset addressing.

• Example:
arrayB db 10h, 20h
arrayW dw 100h, 200h
….
mov al, arrayB ;AL = 10h
mov al, arrayB+1 ;AL = 20h
mov ax, arrayW ;AX = 100h
mov ax, arrayW+2 ;AX = 200h
mov ax, arrayW+1 ;AX = ?

XCHG

• XCHG exchanges the contents
of two registers or a register and
a variable:
XCHG reg, reg
XCHG reg, mem
XCHG mem, reg

XCHG Example

• adding two variables from p. 73
of Irvine.

6

Assembling, Linking,
and Debugging

• Multi-step process:
– Use a text editor to create a

source file.
– Use the assembler program to

read the source file and create an
object file.

– Use the linker to link the object
file with any needed routines
from the link library and create an
executable program.

– Use the operating system to run
the executable.

Assemble-Link-Execute
Cycle

• figure 1 from p. 60 of Irvine
• Table 2 from p. 61 of Irvine

Assembling using
TASM

D:\Janet\Teaching\CS2011\Labs>tasm/z/zi lab1.asm

Turbo Assembler Version 4.1 Copyright (c) 1988, 1996
Borland International

Assembling file: lab1.asm
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 418k

Without errors:

• z option – source lines with errors should be
displayed.
• zi option – include information needed by the
debugger in the output file.

Assembling using
TASM, cont.

D:\Janet\Teaching\CS2011\Labs>tasm/z/zi lab1.asm

Turbo Assembler Version 4.1 Copyright (c) 1988, 1996
Borland International

Assembling file: lab1.asm
mov AX, [mst]

Error lab1.asm(11) Undefined symbol: MST
Error messages: 1
Warning messages: None
Passes: 1
Remaining memory: 418k

With errors:

7

Linking using TASM

• /v option indicates that debug
options should be included.

• Other options:
– /3 – allow 32 bit registers (we

won’t be using this)
– /m – generate a map file

D:\Janet\Teaching\CS2011\Labs>tlink/v lab1

Turbo Link Version 7.1.30.1. Copyright
(c) 1987, 1996 Borland International

Debugging using TASM

• Use debugging options when
assembling and linking

• Debugging information is stored
in the .obj and .exe files,
making them slightly larger.

• Starting the turbo debugger:
–td lab1

Tracing Programs

• Some useful windows for
looking at program information:
– Stack Window (View/Stack) –

lists all active procedures with
most recent called listed first.
This tells you how you got to
where you are.

– Execution History Window – this
keeps a record of the last 400-
3000 instructions executed!

Tracing Programs, cont.

• Stepping through your program:
– run (F9) – runs through the program to

the end, a breakpoint, or until ctrl-break
is pressed

– go to cursor (F4) – runs and stops
before the line the cursor is on is
executed

– trace into (F7) – a single-step through
the program that steps into subroutines

– step over (F8) – a single-step through
the program that skips over procedure
calls (executing the procedure). This
fully executes LOOP and INT
instructions

– see p. 616 of Irvine for more!

8

Breakpoints

• Breakpoints are very useful!
• A breakpoint is a marker that

tells the debugger to pause in
one of the following ways:
– unconditionally on a particular

statement
– when a pre-set condition becomes

true (say on the 3rd time through a
loop)

– when a memory location changes
• see Irvine p. 617 for things you

can do with breakpoints.

Examining and
Modifying Data

• There are many ways to examine
and modify data using the debugger:
– examining registers (View/Registers)
– examine and modify variables

(View/Variables)
– watch windows (View/Watches) allow

you to watch variables change as the
program runs

– view memory (View/Dump) – getting a
hex memory dump (like we did in
debug)

• Be sure to read Appendix D on how
to use the Turbo Debugger!

