
1

Lecture 9

• Arithmetic Operations

• Overflow

• Multiply and Divide

INC and DEC

• INC – adds one to a single
operand

• DEC – decrements one from a
single operand
INC destination

DEC destination

– where destination can be a
register or a memory operand

INC/DEC Examples

inc al ; increment 8-bit register

dec bx ; decrement 16-bit register

inc membyte ;increment 8-bit

;memory operand

dec membyte ; decrement 8-bit

;memory operand

inc memword ;increment 16-bit

;memory operand

dec memword ;decrement 16-bit

;memory operand

ADD

• ADD adds a source operand to a
destination operand of the same
size.
ADD dest, src ;dest = src+dest

– sizes must match

– only one operand (at most) can be
a memory location

– all status flags are affected!

2

ADD Examples

add cl, al ;add 8-bit register to register

;cl = cl + al

add bx, 1000h ;add immediate to 16-bit

; register – bx = bx + 1000h

add var1, ax ;add 16-bit register to memory

;var1 = var1 + ax

add dx, var1 ;add 16-bit memory to register

;dx = dx + var1

add var, 10;add immediate value to

;memory – var = var + 10

SUB

• SUB subtracts a source operand
from a destination operand.
SUB dest, src ;dest = dest – src

– sizes must match

– only one operand (at most) can be
a memory location

– all status flags are affected

– inside the CPU, SUB is
performed by negating the src
operand (using 2’s complement)
and added to the dest operand

SUB Examples
sub cl, al ;subtract 8-bit

; register from register
;cl = cl - al

sub bx, 1000h ;subtract immediate
;value from 16-bit
;register
; bx = bx - 1000h

sub var1, ax ;subtract 16-bit register
; from memory
;var1 = var1 - ax

sub dx, var1 ;subtract 16-bit
;memory from register
;dx = dx – var1

sub var1, 10 ;subtract immediate
;value from memory
;var1 = var1 - 10

Flags Affected: Zero

• Zero flag – set when the result
of an operation is zero.
mov ax, 10

sub ax, 10 ;ax = 0, ZF = 1

mov bl, 4Fh

add bl, 0B1h ;bl = 00, ZF = 1

mov ax, 0FFFFh ;ax = -1

inc ax ;ZF = 1

mov ax, 1

dec ax ;ZF = 1

3

Flags Affected: Sign

• Sign flag – set when the result
of an operation is negative.
mov bx, 1

sub bx, 2 ;bx = FFFF, SF = 1

Flags Affected: Carry

• Carry flag – set when there is a
carry out of the left-most bit.
mov bl, 4Fh

add bl, 0B1h ;bl = 00, CF = 1

(4F + B1 = 100h – since we only
have eight bits, the 1 is discarded
and the carry flag is set)

Exception: INC and DEC do not
set the carry flag!

Flags Affected:
Overflow

• Overflow flag – set when an
arithmetic operation generates a
signed value that exceeds to
storage size of the destination
operand. This means that the
value placed in the destination
operand is incorrect.

• The CPU sets it by comparing
the carry flag to the bit carried
into the sign bit of the
destination operand. If not
equal, overflow is set.

Overflow

• How you check for overflow
depends on if you are using signed
or unsigned operands.

• The programmer decides if they are
using signed or unsigned numbers.

• The CPU updates both the carry and
the overflow flags in order to cover
both options.

• The programmer checks the
appropriate flag depending on if they
are doing signed or unsigned
operations.

4

Unsigned Overflow

• During unsigned arithmetic, if
the carry flag is set then
overflow has occurred:
– addition: 0FFh + 1 = 100h. If you

are only using 8 bits, then only
the two lowest digits (00) fit into
the destination. Carry is set and
overflow has occurred (result will
be 00, not 100)

– subtraction: 1 – 2 = 01 + FE = FF.
If this is treated as unsigned, it is
not correct! FF unsigned = 255.
In this case, the carry flag is set
and overflow has occurred.

More on Unsigned
Overflow

• Something looks strange about the
subtraction:
01 + FE = FF -> where is the carry?

• For subtraction and negation, the
carry flag is set if there is NO carry
out of the most significant bit.
1 – 2 = 01 + FE = FF – no carry, so carry

bit is set to signify overflow.

2 – 1 = 02 + FF = 01 – there is a carry,
and the carry bit is cleared, signifying
no overflow.

• Yes, this is a bit counter-intuitive.

Signed Overflow

• During signed arithmetic, the
overflow flag is set when an out
of range value is generated.

• Of course, the computer doesn’ t
know if your values are signed
or unsigned, so what does this
really mean?
– If the carry into the sign bit

differs from the carry out of the
sign bit, then the overflow flag is
set.

Signed Overflow
Examples

mov al, 126

add al, 2

01111110

+ 00000010

10000000 = 80h

carry into the sign bit is 1

carry out of sign bit is 0

80h = -128, not +128 -> overflow

5

More Signed Overflow

mov al, -128
sub al, 2

10000000
- 00000010

01111110 al = 7Eh = 126, not -130

10000000
+ 11111110 (2 in 2’s comp)
1 01111110
carry in = 0, carry out = 1 -> overflow

Multiplication and
Division

• Instructions for integer
multiplication on 8, 16, and 32
bit operands

• MUL, DIV – unsigned binary
numbers

• IMUL, IDIV – signed binary
numbers

• For floating point? Special
floating point instructions (Ch
15 in Irvine)

MUL

• Multiplies an 8, 16, or 32 bit
operand by AL, AX, or EAX
respectively.

• Format:
MUL multiplier

multiplier – register or memory (not
immediate!)

• Registers used:

Multiplicand Multiplier Product

AL op-8 AX

AX op-16 DX:AX

MUL Examples

bval db 10

…

mov al, 100

mul bval

Before MUL:

AH AL

? 64h

After MUL:

AH AL

03 E8h

6

MUL Examples

wval dw 1000

…

mov ax, 55555 ;D903h

mul wval

Before MUL:

DX AX

? D903

After MUL:

DX AX

034F B3B8

• Multiplication result might need
a high-order byte or word.

• We’ ll be using numbers that are
small enough for the result to fit
in AX so we can ignore DX.

• How do we know when we can
do this?
– MUL sets CF and OF

– If result is small enough to fit into
AL (bytes) or AX (words), CF =
0 and OF = 0

– If result is big, CF = 1, OF = 1

Example: Checking Size

; multiply CX by AX. If result extends
; into DX, copy 2 words to result
; locations, else copy one word.
.data
ResultLo dw ?
ResultHi dw ?
…

mul cx
mov ResultLo, AX
jnc L1 ;jump if carry not set
mov ResultHi, DX

L1:

IMUL

• IMUL multiplies signed binary
numbers.

• Why is this different? It sign
extends the result when needed.

• Formats and use of registers are
the same as in MUL.

• Carry and overflow flags are set
the same.

7

IMUL Examples
bval db 4

…

mov al, -4

imul bval

Before IMUL:

AH AL

? FC

After IMUL:

AH AL

FF F0

CF = 0, OF = 0 : Result fits into 8 bits, AH holds
sign extension.

IMUL Examples
bval db 4

…

mov al, 48

imul bval

Before IMUL:

AH AL

? 30h

After IMUL:

AH AL

00 C0

CF = 1, OF = 1 : Result does not fit into 8 bits!
(why? C0 is a negative number! 00C0 is
positive)

IMUL Examples
wval dw 4

…

mov ax, 48

imul wval

Before IMUL:

DX AX

? 0030

After IMUL:

DX AX

0000 00C0

CF = 0, OF = 0: Result fits into 16 bits.

Warning

• Sixteen bit multiplication will
wipe out whatever is in DX!

• It’s easy to forget this if you are
only using the result returned in
AX.

8

DIV

• DIV divides unsigned 8-bit, 16-
bit, and 32-bit numbers.

• Format:
DIV divisor
divisor - register or memory (not

immediate!)

• Registers used:

Dividend Divisor Quotient Remainder
AX op-8 AL AH
DX:AX op-16 AX DX

DIV Examples
bval db 2 ;divisor

…

mov ax, 0083h ;dividend

div bval

Before DIV:

AH AL

00 83h

After DIV:

AH AL

01 41h

83h / 02h = 41h, R=1

DIV Examples

wval dw 100h ;divisor

…

mov dx, 0 ;clear dividend high!

mov ax, 8003h ;dividend

div wval

Before DIV:

DX AX

0000 8003h

After DIV:

DX AX

0003 0080h

8003h / 0100h = 80h, R=3

Warning

• If you don’ t remember to clear
DX you will get unexpected
results!!!

• If you had something you were
using in DX, it wil l get
destroyed by the division.

9

IDIV

• IDIV works like DIV except it
uses signed numbers.

• In 8-bit division, the dividend is
in AX, so the sign is determined
by bit 15.

• In 16-bit division, the sign is
determined by bit 15 in DX.

IDIV Examples
bval db 5 ;divisor

…

mov ax, -48 ;dividend

idiv bval

Before IDIV:

AH AL

FF D0

After DIV:

AH AL

FD F7

FFD0/5 = F7, R FD
F7 = -9, FD = -3

What NOT to Do!

bval db 5 ;divisor

…

mov ah, 0

mov al, -48 ;dividend

idiv bval

Before IDIV:

AH AL

00 D0

After DIV:

AH AL

03 29

00D0/5 = 29, R 3
29 = 41

(+208)

Sign Extending

• You will need to sign extend
your dividend.

• Intel provides instructions for
this:
– CBW – convert byte to word

extends AL into AX

– CWD – convert word to double
word extends AX into DX:AX

10

IDIV Examples
wval dw 256 ;divisor

…

mov ax, -5000 ;DX:AX = ????EC78h

cwd ;DX:AX =FFFFEC78h

idiv wval

Before IDIV:

DX AX

FFFF EC78

After DIV:

DX AX

FF78 FFED

FFED = -19 (quotient)
FF78 = -136 (remainder)

Division Problems

• Divide Overflow is produced by:
– a division result that is too large
– dividing by zero

• This is not handled gracefully by the
processor: your program will die a
horrible death.

• You’ ll need to prevent it:
– for large numbers, use larger operands

(registers).
– for divide by zero, check for the zero

yourself before you divide.
– or, you can write a special interrupt

handler (see chapter 15 if you’ re
interested).

