Ledure 9

* Arithmetic Operations
* Oveflow
» Multiply and Divide

INC and DEC

* INC —addsonetoasingle
operand

* DEC —decrementsonefroma
single operand
INC destination
DEC destination

— where destination can be a
register or amemory operand

INC/DEC Examples

inc d ; increment 8-bit register
dec bx ;deaement 16-bit register
inc  membyte ;increment 8-bit
;memory operand
dec membyte ; deaement 8-bit
;memory operand
inc  memword ;increment 16-bit
;memory operand
dec memword ;decrement 16-bit
;memory operand

ADD

» ADD adds asource operandto a
destination operand of the same
Size.

ADD dest, src ;dest = src+dest
— sizesmust match

— only one operand (at most) can be
amemory location

— all statusflags are df ected!




ADD Examples

adddl, a ;add 8hit register to register
icl=c+4d

add bx, 1000h ;add immediate to 16-hit
; register —bx = bx + 1000h

addvarl, ax ;add 16hbit register to memory
varl = varl + ax

adddx, varl ;add 16bit memory to register
:dx =dx + varl

add var, 10;addimmediate valueto
;memory —var =var + 10

SUB

» SUB subtrads a source operand
from a destination operand.
SUB dest, src ;dest = dest —src
— sizesmust match

— only one operand (at most) can be
amemory location

— al statusflags are dfected

—insidethe CPU, SUB is
performed by negating the src
operand (using 2's complement)
and added to the dest operand

SUB Examples

sub cl,d ;subtrad 8-bit
; register from register
icl=cl-a

sub  bx, 1000h :subtrad immediate
:vaue from 16-bit
;register
: bx = bx - 1000h

sub  varl, ax ;subtradt 16-bit register
; from memory
varl = varl - ax

sub  dx, varl ;subtrad 16-bit
;memory from register
:dx=dx—varl

sub  varl, 10 ;subtradt immediate
;value from memory
wval=varl-10

Flags Affeded: Zero

» Zero flag — set when the result
of an operationis zero.
mov ax, 10
sub ax,10 ;ax=0,ZF=1
mov bl, 4Fh
add bl,0B1h ;bl=00,ZF=1
mov ax, OFFFFh ;ax=-1

inc ax ZF=1
mov ax, 1
dec ax ZF=1




Flags Affeded: Sign

* Sign flag — set when the result
of an operationis negative.
mov bx, 1
sub bx, 2 ;bx = FFFF, SF=1

Flags Affeded: Carry

» Carry flag — set when thereisa
cary out of the left-most bit.
mov bl, 4Fh
add bl,0B1h ;bl=00,CF=1
(4F + B1 = 100h—sincewe only

have eght bits, the 1 is discarded
andthecarry flagis st)

Exception: INC and DEC do not
set the cary flag!

Flags Affeded:
Overflow

» Overflow flag — set when an
arithmetic operation generates a
signed value that exceedls to
storage size of the destination
operand. This means that the
value placal in the destination
operandisincorred.

» The CPU setsit by comparing
the cary flag to the bit carried
into the sign kit of the
destination operand. If not
equal, overflow is set.

Overflow

» How you chedk for overflow
depends on if you are using signed
or unsigned operands.

» The programmer decidesif they are
using signed or unsigned numbers.

The CPU updates both the cary and
the overflow flagsin order to cover
both options.

» The programmer checksthe
appropriate flag depending oniif they
aredoing signed o unsigned
operations.




Unsigned Overflow

 During unsigned arithmetic, if
the cary flagis set then
overflow has occurred:

— addition: OFFh + 1 = 100h If you
areonly using 8 hits, then only
the two lowest digits (00) fit into
the destination. Carry is %t and
overflow has occurred (result will
be 00, not 100)

— subtraction: 1 -2 =01+ FE = FF.
If thisistreated as unsigned, it is
not corred! FF unsigned = 255,
In this case, the carry flagis set
and overflow has occurred.

More on Unsigned
Overflow

» Something looks drange éou the

subtraction:
01+ FE = FF->whereisthe cary?

* For subtradion and negation, the

cary flagis st if thereisNO cary
out of the most significant bit.
1-2=01+FE=FF-nocary, socary
bit is set to signify overflow.
2-1=02+FF=01-thereisacarry,
andthe carry bit is cleaed, signifying
no overflow.

* Yes, thisisabit counter-intuitive.

Signed Overflow

 During signed arithmetic, the
overflow flag is set when an ou
of range value is generated.

» Of course, the computer doesn’t
know if your values are signed
or unsigned, so what does this
redly mean?

— If the cary into the sign hit
differs from the carry out of the

sign hit, then the overflow flagis
Set.

Signed Overflow
Examples

mov al, 126
addd, 2

01111110
+ 00000010
10000000= 80h
cary intothesign bitis1
cary out of sign hitis0O
80h=-128 not +128-> overflow




More Signed Overflow

mov al, -128
sub d,?2

100000
- 00000010
01111110 a =7Eh=126 not-130

100000
+11111110(2in 2'scomp)
101111110
caryin=0, cary out = 1 -> overflow

Multi pli cation and
Division

* Instructions for integer
multiplicaion on 8 16, and 32
bit operands

* MUL, DIV —unsigned binary
numbers

* IMUL, IDIV —signed binary
numbers

* For floating point? Spedal
floating point instructions (Ch
15inIrvine)

MUL

* Multipliesan 8, 16, or 32 kit
operandby AL, AX, or EAX
respedively.

* Format:

MUL multiplier
multiplier — register or memory (not
immediate!)

* Registers used:

Multi plicand Multiplier Product
AL op-8 AX
AX op-16 DX:AX

MUL Examples
bva db 10
mov al, 100
mul bval
Before MUL:
AH AL
[ 2 | & |
After MUL:
AH AL

‘ 03 ‘ E8h ‘




MUL Examples

wva dw 1000

mov ax, 55555 ;D903h

mul wva
Before MUL.:
DX AX
‘ " ‘ D903 ‘
After MUL:
DX AX
034F ‘ B3B8 ‘

» Multiplication result might need
ahigh-order byte or word.

» We'll be using numbersthat are
small enough for the result to fit
in AX sowecanignore DX.

* How dowe know when we can
dothis?
— MUL sets CF and OF

— If result is gnall enough to fit into
AL (bytes) or AX (words), CF =
0andOF=0

—If result ishig, CF=1,0F =1

Example: Cheding Size

; multiply CX by AX. If result extends
; into DX, copy 2 words to result

; locations, else wpy one word.

.data

ResultLo  dw ?

ResultHi  dw ?

mul cX
mov ResultLo, AX
jnc L1 ;jumpif carry not set

mov ResultHi, DX
L1:

IMUL

IMUL multi plies signed binary
numbers.

Why isthis different? It sign
extends the result when needed.
Formats and wse of registers are
the same asin MUL.

Carry and ovwerflow flags are set
the same.




IMUL Examples
bva db 4
mov al, -4
imul bval
Before IMUL :
AH AL
| » | F |
After IMUL:
AH AL
FF \ FO

CF =0, OF =0: Result fitsinto 8 kits, AH holds
sign extension.

IMUL Examples

bvad db 4
mov al, 48
imul bval
Before IMUL:
AH AL
[ 2 | 3 |
After IMUL:
AH AL
00 ‘ (60]

CF =1, OF = 1: Result does not fit into 8 hits!
(why? CO isanegative number! 00C0is
positive)

IMUL Examples
wva dw 4
mov ax, 48
imul wva
Before IMUL:
DX AX
" 0030 ‘
After IMUL:
DX AX
‘ 0000 ‘ 00COo ‘

CF =0, OF = 0: Result fitsinto 16 hts.

Warning

* Sixteen bit multiplication will
wipe out whatever isin DX!

* |t'seasy to forget thisif youare
only using the result returned in
AX.




DIV

» DIV divides unsigned 8-bit, 16-
bit, and 32bit numbers.
* Format:
DIV divisor
divisor - register or memory (not
immediate!)
* Registers used:

Dividend Divisor Quotient Remainder
AX op-8 AL AH
DX:AX o0p-16 AX DX

DIV Examples

bva db 2 ;divisor

mov ax, 0083h ;dividend

div bva
Before DIV:

AH AL

00 ‘ 83h
After DIV:

AH AL
o | e |

83h/02h=41h, R=1

DIV Examples
wva dw 100h ;divisor

mov dx, 0 ;Clear dividend high!
mov ax, 8003h ;dividend
div wva

Before DIV:

DX AX
‘ 0000 ‘ 8003h ‘

After DIV:
DX AX
0003 ‘ 0080h ‘

8003h/ 0100h = 80h, R=3

Warning

* If you dorit remember to clea
DX youwill get unexpeded
resultsi!!

* If you had something you were
using in DX, it will get
destroyed by the division.




IDIV

» IDIV workslike DIV except it
uses sgned numbers.

* In 8bit division, the dividendis
in AX, so the sign is determined
by bit 15.

* In 16-bit division, thesignis
determined by bit 15in DX.

IDIV Examples

bva db 5 ;divisor

mov ax, -48 ;dividend

What NOT to Do!
bva db 5 ;divisor
mov ah, 0
mov al, -48 :dividend
idiv bl
Before IDIV:
AH AL
o0 | DO (+208)
After DIV:
AH AL
03 29

00D0/5=29,R3
29=41

idiv bl
Before IDIV:
AH AL
w0 ]
After DIV:
AH AL
‘ FD ‘ F7 ‘
FFDO/5=F7, RFD
F7=-9,FD =-3
Sign Extending

* Youwill need to sign extend
your dividend.
* Intel providesinstructions for
this:
— CBW - convert byte to word
extends AL into AX

— CWD - convert word to dauble
word extends AX into DX:AX




IDIV Examples

wval dw 256 ;divisor

mov ax, -5000 ;DX:AX =????EC78h

cwd ;DX:AX =FFH-EC78h
idiv wva
Before IDIV:
DX AX
‘ |:|:|:|:‘ EC78 ‘
After DIV:
DX AX
‘ FF78 ‘ FFED ‘

FFED = -19 (quatient)
FF78 = -136 (remainder)

Division Problems

 Divide Overflow is produced by:
— adivision result that istoo large
— dividing by zero
» Thisisnot handed gracdully by the
processor: your program will die a
horrible death.
* You'll need to prevent it:
— for large numbers, use larger operands
(registers).
— for divide by zero, check for the zero
yourself before you dvide.

— or, you can write aspedal interrupt
handler (see dapter 15if you're
interested).

10



