
1

Lecture 7: Assembly
Language Programs

• Basic elements of assembly
language

• Assembler directives

• Data allocation directives

• Data movement instructions

• Assembling, linking, and
debugging

• Using TASM

Constants and
Expressions

• Numeric literal – a combination of
digits and optional parts (sign,
decimal point, exponent)
10, 21.2, 34.E+3

• Integer constants end with a radix
symbol – h (hex), q or o (octal), d
(decimal), b (binary).
– Default is decimal!

– Uppercase/lowercase is ignored.

– If a hex constant starts with a letter, it
must have a leading zero (A12h –
wrong, 0A12h – right)

note: this extra zero may not be stored –
i.e. 0FFFFh is stil l a 16 bit number!

Constants and
Expressions (cont.)

• constant expression – combinations
of literals, operators and defined
symbolic constants. Ex: 5 * 18.

• symbolic constant – constant
expression assigned to a name. Ex:
rows=5
– remember: these expressions can only

be evaluated at assembly time!

• Character or string constants –
strings in single or double quotes.
You can embed them:
– “This isn’ t hard” , ‘Say “hello” to Bill .’

Statements

[name][mnemonic][operands][;comment]

• Free-form – any column, any number of
spaces, can use blank lines

• For readabilit y, be consistent with your
spacing!

• Two types of statements:
– Instruction – statements executed by the

processor at run-time. Types are:
• Transfer of control (subroutine call)

• Data transfer (move)

• Arithmetic (add)

• Logical (jump)

• Input/output

– Directives – statements that give instructions to
the assembler.

2

Names

• Four types of names:
– Variable – a location in the program’s

data area that has been given a name.
– Label – a place-marker used by the

program to jump from one place to
another

– Symbol – names given to symbolic
constants

– Keyword – words with special
meanings to the assembler (such as
instruction mnemonics)

• Case-insensitive
• Can’ t start with digits (and should

avoid starting with @)
• Can’ t match a reserved word

Assembly Directives

• .code – marks start of code segment
• .data – marks start of data segment
• .stack – set the size of the stack

segment
• .model – specify memory model (we

will use .model small – 64K for
memory, 64K for data)

• title – title of li sting file
• proc – begin procedure
• endp – end of procedure
• end – end of program
• page – set page format

Program Structure Using
Directives

titl e <your tit l e here >
.mod el s mall
.sta ck 1 00h
.data
<you r dat a here>
.code
main proc

mov ax, @d ata
mov ds ,ax

<you r code her e>
main endp
end main

Alternative Structure

titl e <your tit l e here >
.mod el s mall
.sta ck 1 00h
.data
<you r dat a here>
.code
.sta r tup

<you r code her e>
.exit
end

.startup and .exit are always used
in a pair. .startup sets up the data
segment so you don’ t need to do
it!

3

Data Allocation
Directives

• Data allocation directives
allocate storage based on
several predefined types:
– DB – define byte (1 byte)

– DW – define word (2 bytes)

– DD – define doubleword (4 bytes)

– … and more for larger data types
(up to 10 bytes)

Define Byte (DB)

• Example:
char1 db ‘A’ ;ASCII character
char2 db ‘A’ – 10 ; expression
signed1 db –128 ;smallest signed val
signed2 db +127 ;largest signed val
unsig1 db 255 ;largest unsigned val

• Multiple initializers:
list db 1, 2, 3, 4

• Strings:
myString db “Hello World” ,0

• Can duplicate values using DUP:
db 2 dup(“ABC”) ; 6 bytes “ABCABC”

DB Example

.data

aList db “ABCD”

offset contents

0000 ‘A’

0001 ‘B’

0002 ‘C’

0003 ‘D’

Define Word (DW)
• Example:

dw 0, 65535 ;smallest/largest unsigned vals
dw –32768, 32767 ;smallest/largest signed
dw 256 * 2 ;calc expression (512)
dw 1000h, 4094, ‘AB’ ; multiple initializers
dw ? ;uninitialized
dw 5 dup(1000h) ; 5 words, each 1000h
dw 5 dup(?) ;5 words, uninitialized

• Pointer – the offset of a variable or
subroutine can be stored in another
variable (a pointer):
list dw 23, 4 5, 22, 34
pt r dw list

• Reversed storage format – the
assembler reverses the bytes in a
word value when storing in memory:
lowest byte, lowest address. Bytes
are re-reversed when moved into a
register.

4

DW Example

Remember lab 1?

• code:
.data

msg dw ' SC' , '02 ' ,' 11', ' L ',
'ba' , '1 '

• data in memory:
• - d 1 31d: 0

131D: 0000 43 5 3 3 2 3 0 3 1 31 20 4 C- 61
62 2 0 3 1 2 B D3 E 8 D B CS2011 Lab
1+. . .

Define Doubleword
(DD)

• Examples:
signed_val dd 0, 0BCDA1234h, -2147483648
block dd 100h dup(?) ; 256 doublewords (1024

bytes)

• Bytes in a doubleword are stored in
reverse order – least significant
digits at the lowest offset.
12345678h:
Offset: 00 01 02 03
Value: 78 56 34 12

• Doublewords can hold the 32-bit
segment-offset address of a variable
or procedure:
poin t er dd subr out i ne1

MOV Instruction

• MOV destination, source

• Basic forms:
– MOV reg, reg

– MOV mem, reg

– MOV reg, mem

– MOV mem, immed

– MOV reg, immed

• Notice: no move from memory
to memory!

MOV Examples

.data
count db 10
total dw 4126h
bigVal dd 12345678h

.code
mov al, bl ;8-bit register to register
mov bl, count ; 8-bit memory to register
mov count,26 ; 8-bit immediate to memory
mov bl, 1 ;8-bit immediate to register
mov dx, cx ; 16-bit register to register
mov bx, 8FE2h ;16-bit immediate to register
mov total, 1000h ;16-bit immediate to memory
mov eax, ebx ; 32-bit register to register
mov edx, bigVal ;32-bit memory to register

5

Type Checking

• The assembler gives variables a default
attribute based on size.

• When you refer to the variable, the
assembler checks the size and gives an
error if they do not match.
.d at a
co unt dw 20h
.c ode
mov al , c ount ; e r r or

• The LABEL attribute is used to create a
new name with a different attribute at the
same offset. Then you can access the same
data with either name.
.d at a
co unt b l abel b yt e ; b yt e a tt ri but e
co unt w d w 20h ; w or d a tt ri but e

.c ode
mov al , count B ; g et l ow byt e
mov c x, count W ; g et w hole t hi ng

Operands with
Displacements

• You can add a displacement to the
name of a variable using direct-
offset addressing.

• Example:
arra yB db 10h, 20h

arra yW dw 100h, 200h

….

mov al, arr ayB ;AL = 10h

mov al, arr ayB+1 ;AL = 20h

mov ax, arr ayW ;AX = 100h

mov ax, arr ayW+2 ;AX = 200h

mov ax, arr ayW+1 ;AX = ?

XCHG

• XCHG exchanges the contents
of two registers or a register and
a variable:
XCHG reg, reg

XCHG reg, mem

XCHG mem, reg

• This is the most efficient way to
exchange two operands.

• But.. you can not exchange two
memory operands this way!

XCHG Example

• adding two variables from p. 73
of Irvine.

6

Assembling, Linking,
and Debugging

• Multi -step process:
– Use a text editor to create a

source file.
– Use the assembler program to

read the source file and create an
object file.

– Use the linker to link the object
file with any needed routines
from the link library and create an
executable program.

– Use the operating system to run
the executable.

Assemble-Link-Execute
Cycle

• figure 1 from p. 60 of Irvine

• Table 2 from p. 61 of Irvine

Assembling using
TASM

D:\Janet\Teaching\CS2011\Labs>tasm/z/zi lab1.asm

Turbo Assembler Version 4.1 Copyright (c) 1988, 1996
Borland International

Assembling file: lab1.asm
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 418k

Without errors:

• z option – source lines with errors should be
displayed.
• zi option – include information needed by the
debugger in the output file.

Assembling using
TASM, cont.

D:\Janet\Teaching\CS2011\Labs>tasm/z/zi lab1.asm

Turbo Assembler Version 4.1 Copyright (c) 1988, 1996
Borland International

Assembling file: lab1.asm
mov AX, [mst]

** Error** lab1.asm(11) Undefined symbol: MST
Error messages: 1
Warning messages: None
Passes: 1
Remaining memory: 418k

With errors:

7

Linking using TASM

• /v option indicates that debug
options should be included.

• Other options:
– /3 – allow 32 bit registers (we

won’ t be using this)

– /m – generate a map file

D: \ Janet \ Teachi ng\ CS2011\ Labs>t l i nk/ v l ab1

Tur bo L i nk Ver s i on 7 . 1. 30.1 . Copyr i ght
(c) 1 987, 1 996 B or l and I nt er nat i onal

Debugging using TASM

• The debugger is the best way to test
and debug your assembly program.
Knowing how to use the debugger
will save you lots of time (not to
mention pain and aggravation!)

• Be sure to assemble and link with
the debugging options turned on!

• Debugging information is stored in
the .obj and .exe files, making them
slightly larger.

• Starting the turbo debugger:
– td l ab1

Tracing Programs

• Some useful windows for
looking at program information:
– Stack Window (View/Stack) –

lists all active procedures with
most recent called li sted first.
This tells you how you got to
where you are.

– Execution History Window – this
keeps a record of the last 400-
3000 instructions executed!

Tracing Programs, cont.

• Stepping through your program:
– run (F9) – runs through the program to

the end, a breakpoint, or until ctrl-break
is pressed

– go to cursor (F4) – runs and stops
before the line the cursor is on is
executed

– trace into (F7) – a single-step through
the program that steps into subroutines

– step over (F8) – a single-step through
the program that skips over procedure
calls (executing the procedure). This
fully executes LOOP and INT
instructions

– see p. 616 of Irvine for more!

8

Breakpoints

• Breakpoints are very useful!
• A breakpoint is a marker that

tells the debugger to pause in
one of the following ways:
– unconditionally on a particular

statement
– when a pre-set condition becomes

true (say on the 3rd time through a
loop)

– when a memory location changes

• see Irvine p. 617 for things you
can do with breakpoints.

Examining and
Modifying Data

• There are many ways to examine
and modify data using the debugger:
– examining registers (View/Registers)

– examine and modify variables
(View/Variables)

– watch windows (View/Watches) allow
you to watch variables change as the
program runs

– view memory (View/Dump) – getting a
hex memory dump (like we did in
debug)

• Be sure to read Appendix D on how
to use the Turbo Debugger!

