Ledure 7: Asembly
Language Programs

Basic dements of assembly
language

Assmbler directives

Data dlocaion dredives
Data movement instructions
Assmbling, linking, and
debugging

Using TASM

Constants and
Expressons

* Numeric literal —acombination o
digits and qptional parts (sign,
decimal point, exponent)

10, 21.2, 34.E+3

* Integer constants end with aradix
symba —h (hex), g or o (octal), d
(dedmal), b (binary).

— Default is decimal!
— Uppercase/lowercase isignored.
— If ahex constant starts with aletter, it

must have aleading zero (A12h—
wrong, 0A12h—right)

note: this exra zero may not be stored —
i.e. OFFFFhis dill a 16 bt number!

Constants and
Expressons (cont.)

constant expresson — combinations
of literals, operators and defined
symbalic constants. Ex: 5* 18.

symbalic constant — constant
expresson assgned to aname. EXx:
rows=5

— remember: these expressions can orly

be evaluated at assembly time!

Character or string constants—
strings in single or double quotes.
Y ou can embed them:

— “Thisisn't hard”, *Say “hello” to Bill .’

Statements

[name][mnemonic][operands][;comment]
» Freeform—any column, any number of
spaces, can use blank lines
* For readability, be consistent with your
spadng!
» Two types of statements:
— Instruction — statements exeauted by the
processor at runrtime. Types are:
 Transfer of control (subroutine cal)
« Datatransfer (move)
 Arithmetic (add)
« Logicd (jump)
* Input/output
— Diredives — statements that give instructions to
the assembler.

Names

 Four types of names:
— Variable—alocation in the program’s
data aeathat has been given aname.

— Label —aplace-marker used by the
program to jump from one place to
another

— Symbol — names given to symbolic
constants

— Keyword — words with specia
meanings to the assembler (such as
instruction mnemonics)

» Case-insensitive

o Can't start with dgits (and should
avoid starting with @)

+ Can't match areserved word

Assmbly Diredives

.code —marks dart of code segment
.data— marks gart of data segment

Stadk — set the sizeof the stack
segment

.model — speafy memory model (we
will use .model small — 64K for
memory, 64K for data)

title—title of listingfile
proc — begin procedure
endp — end of procedure
end— end of program
page — set page format

Program Structure Using
Diredives

titl e <yourtit |e here>

.models nall

.sta ck1 00h

.data

<your data here>

.code

main proc
mov ax, @d ata
mov/ ds,ax
<your code here>

main endp

end nain

Alternative Structure

titl e <yourtit |e here>
.models nall
.sta ck1 00h
.data
<your data here>
.code
.Sta rtup
<your code here>
.exit
end

.Startup and .exit are always used
inapair. .startup sets up the data
segment so you con't need to do
it!

Data Allocaion
Diredives

» Data dlocaion dredives
all ocae storage based on
several predefined types:
— DB — define byte (1 byte)
— DW —define word (2 bytes)
— DD - define doubleword (4 bytes)

— ... and more for larger datatypes
(upto 10bytes)

Define Byte (DB)

* Example:

charl db‘'A’ ;ASCII character
char2 db*A’ —10; expression
signed1 db —128 ;smallest signed val
signed2 db+127 ;largest signed va
unsigl db 2% ;largest unsigned va
Multipleinitidizers:

lissdb 1,2,3,4
o Strings:

myString db“Hello World”,0
Can duplicate values using DUP:
db 2dup(*ABC”") ; 6 bytes“ABCABC"

DB Example

.data
alList db “ABCD”

off set contents
0000 ‘A
0001 ‘B’
0002 ‘C
0003 ‘D’

Define Word (DW)

* Example:
dw 0O, 65535 ;small est/largest unsigned vals
dw —32768, 32767 ;small est/largest signed
dw 256 * 2 ;cdc expresson (512)
dw 1000h, 4094, ‘AB’ ; multipleinitializers
dw ? ;uninitialized
dw 5 dup(1000h) ; 5words, ead 1000h
dw 5 dup(?) ;5 words, uninitiaized
* Pointer —the off set of avariable or
subroutine @n be stored in another
variable (a pointer):
list dw 23,4 5, 22, 34
ptr dw list

* Reversed storage format — the
assembler reversesthe bytesin a
word value when storing in memory:
lowest byte, lowest address Bytes
arere-reversed when moved into a
register.

DW Example

Remember lab 1?
» code:

.data

msg dw ' SC','02 ', 11, 'L,
‘ba’ ,'1'

e datain memory:

« -d131d:0

131D: 0000 435332303131 204C61
62203 12BD3E8DB CS2011 Lab
1+ ..

Define Doudeword
(DD)

* Examples:
signed_val dd 0, 0BCDA1234h, -2147483648

block dd 100h dup(?) ; 256 doublewords (1024
bytes)

» Bytesin adoubleword are stored in
reverse order — least significant
digits at the lowest off set.

12345678h:
Offset: 00 01 02 03
Vaue 78 56 34 2

» Doubewords can hold the 32-bit
segment-offset addressof avariable
or procedure:

poin ter dd subr outinel

MOV Instruction

MOV destination, source

e Basic forms:
— MOV reg, reg
— MOV mem, reg
— MOV reg, mem
— MOV mem, immed
— MOV reg, immed
» Notice nomove from memory
to memory!

MOV Examples

.data

count db 10

total dw 4126h
bigva dd 12345678h

.code
mov al, bl ;8-hit register to register
mov bl, count ; 8-bit memory to register
mov count,26 ; 8-bit immediate to memory
mov bl,1 ;8-bitimmediate to register
mov dx,cx ; 16-bit register to register
mov bx, 8FE2h ;16-bit immediate to register
mov total, 1000h ;16-bit immediate to memory
mov ea, ebx ; 32-bit register to register
mov edx, bigval ;32-bit memory to register

Type Cheding

e Theasembler gives variables a default
atribute based on size.

* When you refer to the variable, the
assembler checks the size and gives an
error if they do not match.

data

count dw 20h

.c ode

mov al,c ount ;e rror

e TheLABEL attributeis used to credea
new name with a diff erent attribute & the
same offset. Then you can accessthe same
datawith either name.

data

countb | abelb yte;b yteatt ri bute
countwdw 20h ;wordatt ri bute
.c ode

mov al, countB ;g etl ow byte

movc x, countW ;g etw hole thing

Operands with
Displacements

* You can add adisplacement to the
name of avariable using direct-
off set addressng.

* Example:

arra yB db 10h, 20h
arra yW dw 100h, 200h

mov al, arr ayB (AL

XCHG

» XCHG exchanges the mntents
of two registers or aregister and
avariable:

XCHG reg, reg
XCHG reg, mem
XCHG mem, reg

» Thisisthe most efficient way to
exchange two operands.

 But.. you can na exchange two
memory operands this way!

= 10h
mov al, arr ayB+1 ;AL = 20h
mov ax, arr ayw :AX = 100h
mov ax, arr ayWw+2 ;AX = 200h
mov ax, arr ayWwrl ;AX = ?
XCHG Example

* adding two variables from p. 73
of Irvine.

Assmbling, Linking,
and Debuggng

* Multi-step process

— Use atext editor to create a
sourcefile.

— Use the assambler program to
rea the sourcefile and creae an
objed file.

— Use thelinker to link the object
file with any needed routines
from the link library and crede an
executable program.

— Use the operating system to run
the executable.

Assmble-Link-Exeaute

Cycle

* figure1fromp. 60 d Irvine
» Table2fromp. 61 d Irvine

Assmbling wsing
TASM

Withou errors:

D:\Janet\Teadhing\CS2011\Labs>tasm/z/zi labl.asm

Turbo Assmbler Version 4.1 Copyright (c) 1988, 199
Borland International

Asembling file: lablasm
Error messges: None
Warning messages. None
Passes: 1
Remaining memory: 418

« z option — source lines with errors should be
displayed.

« Zi option —include information needed by the
debugger in the output file.

Assmbling wsing
TASM, cont.

With errors;

D:\Janet\Teading\CS2011\Labs>tasm/z/zi labl.asm

Turbo Aseembler Version 4.1 Copyright (c) 1988, 199%
Borland International

Asembling file: labl.asm
mov AX, [mst]
** Error** labl.asm(11) Undefined symbol: MST
Error messages: 1
Warning messages: None
Passes: 1
Remaining memory: 418

Linking uising TASM

D:\ Janet\ Teachi ng\ CS2011\ Labs>tl i nk/vI abl

TurboLink Version7.1.30.1. Copyright
(c)1 987,1 996Borlandl nternational

* /v optionindicates that debug
options ould be included.
 Other options:

— /3 —allow 32 bit registers (we
won't be using this)
—/m — generate amap file

Debuggng ising TASM

» The debugger isthe best way to test
and debug your assembly program.
Knowing how to use the debugger
will saveyoulots of time (not to
mention pain and aggravation!)

» Besureto asemble andlink with
the debugging options turned on

» Debugging information is gored in
the .obj and .exefiles, making them
dightly larger.

» Starting the turbo debugger:

—tdl abl

Traang Programs

» Some useful windows for

looking at program information:

— Stadk Window (View/Stad) —
listsal active procedures with
most recent call ed listed first.
Thistellsyou hav you got to
where you are.

— Exeaution History Window — this
kegosareard of the last 400-
3000 instructions exeauted!

Tradng Programs, cort.

* Stepping through your program:

— run (F9) — runs through the program to
the end, a breakpoint, or urtil ctrl-break
is pressed

— goto cursor (F4) —runsand stops
beforethelinethe cursorisonis
executed

— traceinto (F7) —asingle-step through
the program that steps into subroutines

— step over (F8) — asingle-step through
the program that skips over procedure
cdls (executing the procedure). This
fully executes LOOP and INT
instructions

— seep. 6160f Irvine for more!

Bre&paints

» Breakpoints are very useful!

A breakpoaint is amarker that
tell s the debugger to pausein
one of the following ways:
— unconditionally on aparticular
statement
— when a pre-set condition becomes
true (say on the 3" time through a
loop)
— when amemory location changes

 seelrvine p. 617for things you
can dowith breakpaints.

Examining and
Modifying Data

* There ae many waysto examine
and modify data using the debugger:

— examining registers (View/Registers)

— examine and modify variables
(View/Variables)

— watch windows (View/Watches) alow
you to watch variables change asthe
program runs

— view memory (View/Dump) — getting a
hex memory dump (likewedid in
debug)

» Besureto read Appendix D on hov
to use the Turbo Debugger!

